
autoCSP - CSP-injecting reverse HTTP proxy

Nicolas Golubovic

Bachelor Thesis. November 6, 2013.
Chair for Network and Data Security – Prof. Dr. Jörg Schwenk
Advisor: Dr.-Ing. Mario Heiderich
Nonacademic Advisor: Dipl-Ing. Felix Gröbert

i

Declaration

I hereby declare that this submission is my own work and that, to the best of my knowledge and belief, it
contains no material previously published or written by an- other person nor material which to a substantial
extent has been accepted for the award of any other degree or diploma of the university or other institute of
higher learning, except where due acknowledgment has been made in the text.

Erklärung

Ich erkläre, dass das Thema dieser Arbeit nicht identisch ist mit dem Thema einer von mir bereits für ein an-
deres Examen eingereichten Arbeit. Ich erkläre weiterhin, dass ich die Arbeit nicht bereits an einer anderen
Hochschule zur Erlangung eines akademischen Grades eingereicht habe.

Ich versichere, dass ich die Arbeit selbständig verfasst und keine anderen als die angegebenen Quellen
benutzt habe. Die Stellen der Arbeit, die anderen Werken dem Wortlaut oder dem Sinn nach entnommen
sind, habe ich unter Angabe der Quellen der Entlehnung kenntlich gemacht. Dies gilt sinngemäß auch für
gelieferte Zeichnungen, Skizzen und bildliche Darstellungen und dergleichen.

Ort, Datum Unterschrift

ii

Acknowledgments

First and foremost I would like to thank Felix Gröbert of Google Inc. for proposing this thesis topic and
giving invaluable feedback to my ideas. Furthermore, I thank Google, for allowing him to do so and thus
supporting my thesis. Without his initiative and effort this thesis would not exist.

Special thanks to my advisor Mario Heiderich, who provided extremely helpful advice regarding both the
topic and scientific writing.

Abstract
As the Internet gains wide adoption, the World Wide Web becomes one of the most important sources of

information worldwide. Highly distributed networks serve millions of clients every day. In consequence of
this popularity, user agents increased in complexity over the years, while still maintaining the technological
burdens of their early days. Core security issues were left untouched by browser vendors and standards
bodies. This led to a wide range of possible client-side attacks today. By default, there are only a few
limitations to the capabilities of web documents. Accordingly, user agents shift the responsibility to protect
from client-side attacks to web applications.

In an attempt to give web applications the possibility of limiting these capabilities, Sterne et al. proposed
Content Security Policy in 2010. It enables fine grained policies, strictly controlling the allowed resources
and other properties of web documents. As a result of that, it is able to reduce the attack surface of a web
application in a substantial way. This comes at the cost of breaking compatibility with all websites using
inline code and eval-like constructs. In order to use secure policies, these have to be rewritten. Therefore,
deploying CSP may not always be feasible. Furthermore, policy generation introduces a lot of pitfalls
because it leaves the decision, which resources (or resource types) might harm client-side security, to the
web application. Thus, it is easily possible to create too broad policies, not increasing the security at all.

This thesis presents a reverse HTTP proxy, which is able to infer restrictive CSPs for arbitrary web
applications. It externalizes inline code automatically in a secure way and attempts to replace calls to eval-
like constructs. Overall, it allows web applications to adopt CSP without any changes to server-side code.

Contents

List of Figures . v
List of Tables . vi

1. Introduction 1

2. Related Work 3

3. Fundamentals 5
3.1. HTTP . 5
3.2. Proxy Servers . 7
3.3. HTML . 9
3.4. CSS . 10
3.5. JavaScript . 11
3.6. JSON . 12
3.7. DOM . 13
3.8. Same-Origin-Policy . 14
3.9. Attacks . 14

4. Content Security Policy 17
4.1. Concept . 17
4.2. Directives . 18
4.3. Report-Only . 19
4.4. CSP 1.1 . 20
4.5. Limitations . 21

5. Reverse HTTP Proxy 24
5.1. Design . 24
5.2. Learning Mode . 28
5.3. Locked Mode . 37

6. Evaluation 43
6.1. Test Suites . 43
6.2. Google Gruyere . 45
6.3. Damn Vulnerable Web Application . 46
6.4. Roundcube Mail . 48

7. Conclusion 49

A. Appendix 50
A.1. Alexa Top 1000 Analysis . 50

Bibliography 52

List of Figures

3.1. A forward HTTP proxy acting as a mediator between one or more clients from an internal
network and multiple web servers in the Internet . 8

3.2. A reverse HTTP proxy acting as a mediator between clients from the Internet and one or
more web servers . 8

5.1. Core idea of autoCSP . 24
5.2. Hybrid policy generation strategy . 30
5.3. Control flow of the report sink . 31

A.1. Proportions of resource origins . 51

List of Tables

3.1. The four classes of XSS . 15

4.1. CSP 1.0 directives . 18

5.1. Internal events . 26
5.2. Database tables . 26
5.3. Data structure of externalized code . 27
5.4. Data structure of policy rules . 27
5.5. Cache-disabling HTTP headers . 28
5.6. Nodes visited by policy.js and associated actions . 33
5.7. Externalized code types . 35
5.8. Nodes visited by policy.js for style sheet externalization . 36
5.9. Nodes visited by policy.js for script externalization . 36

A.1. Results of the Alexa analysis . 51

1. Introduction

Global Internet usage has continuously grown in the past years – a trend estimated to carry on in the near

future1. Simultaneously, the World Wide Web became a popular medium for information exchange and

communication. Hence, browsers, being the main mediator between users and web applications, greatly

increased in complexity over the time. In the early days of the web, a browser was merely capable of

displaying static content, using simple protocols and languages [1]. Modern browsers offer, for example,

real time communication2 and 3D graphics rendering [2]. While the web moved forwards in both usage and

technology, the core security principles persisted. Reis et al. depict this as a fundamental problem of the web

platform [3]. Security boundaries are blurred by exceptions and browser quirks. Furthermore, the simple

protocols used in the web offer no possibility of separating structure from content. In the course of the last

years, compatibility was chosen over security and hence these core issues still exist. Therefore, web security

has become a patchwork of various mechanisms and techniques, implemented both on the client- and server-

side. However, the ultimate responsibility to protect from attacks lies in the web application. If the web

application is vulnerable to content injection attacks, such as Cross-site scripting (XSS) (cf. Section 3.9.2),

the browser does little to prevent data leakage by default. This is especially troubling, considering the

amount of private data stored in the web today. According to the Open Web Application Security Project

(OWASP), XSS still is the third most frequent vulnerability in the web [4].

Defense in depth is an approach to prevent attacks through multiple layers of security mechanisms [5].

It assumes that each mechanism on its own could potentially be bypassed, leaving the web application un-

protected. Thus, many different layers are employed at the same time to achieve a good overall security.

Content Security Policy (CSP) aims to be one of these layers [6]. It allows web applications to limit the

allowed resources and properties of all served documents – a practice known as capability control. A strict

policy is a whitelist of allowed resources, none of which should be controllable by an attacker. Additionally,

inline code needs to be disallowed because its origin cannot be reliably determined by browsers. Another

risk can be mitigated by disabling eval-like constructs with CSP. This tightens the security of a web appli-

cation tremendously, in contrast to the few limitations enforced on web documents by default. Attackers,

not limited by CSP or comparable mechanisms, may extract arbitrary information with a client-side code

injection. On the contrary, if such a policy is enforced, it first must be bypassed to leak data. Based on the

strictness of the whitelist, this might prove difficult.

Deploying CSP may require huge effort, as secure policies disallow inline code and eval-like constructs.

Occurrences of these code patterns must be rewritten, which may not always be possible. Some (very few)
1Wikipedia, Global Internet usage, http://en.wikipedia.org/wiki/Global_Internet_usage, Oct. 2013
2A. Bergkvist, D. C. Burnett, C. Jennings and A. Narayanan, WebRTC 1.0: Real-time Communication Between Browsers -

W3C Editor’s Draft, http://dev.w3.org/2011/webrtc/editor/webrtc.html, Oct. 2013

http://en.wikipedia.org/wiki/Global_Internet_usage
http://dev.w3.org/2011/webrtc/editor/webrtc.html

Introduction 2

use cases actually require dynamic code building as offered by eval. Additionally, the amount of work which

has to be carried out to rewrite the web application, might not always be feasible. Finally, even if a web

application can be protected by a CSP, generating a policy introduces many pitfalls. Too broad policies

might be easily bypassed, while too strict policies may break web application functionality or usability. For

instance, a blog might be using a strict CSP to protect from data leakage. Each new post may not contain

external images, unless it is hosted on a whitelisted location or the policy is extended. Compared to the little

work required without CSP, this reduces the usability of the blog software substantially.

In order to make the widespread use of CSP possible, a solution to these problems must be found. This

thesis proposes a reverse HTTP proxy, capable of inferring strict policies and externalizing inline code

automatically. These policies can be enforced to obtain the protection offered by CSP, while preserving

website functionality in many cases. The proxy is application agnostic and thus able to protect any web

application without any changes to server-side code. In addition, this thesis evaluates the advantages and

downsides of the chosen approach, highlighting the problems of making documents compatible with strict

CSPs.

Outlook

This thesis is composed of seven chapters and one appendix. After the introduction, important research,

which is related to this thesis, is presented in Chapter 2. Then, the fundamental knowledge, needed to

understand this thesis, is briefly explained in Chapter 3. CSP is the core mechanism used by the proxy.

Therefore, Chapter 4 describes it in detail. In Chapter 5, the proxy is introduced with details on its policy

generation and code externalization. An evaluation of it is given in Chapter 6. Based on this, the conclusion

elaborates on the advantages and downsides of this approach in Chapter 7.

2. Related Work

This thesis proposes a CSP-based protection mechanism, which offers XSS mitigation and general data leak-

age prevention. Many publications cover similar topics. Proposals range from server-side XSS detection [7]

to client-side mitigation of the effects [8]. One of these mitigation techniques was proposed by Vogt et al. in

2007 [9]. Due to taint tracking of sensitive information, the mechanism allowed users to decide which data

may be transferred to third parties.

Reis et al. argued in 2007 that the web is moving towards feature-rich web programs [3]. However, they

pointed out major weaknesses of the web platform and proposed browser architecture refinements. One

of these weaknesses is the poor separation between code and data in the web. This problem was tackled

by multiple approaches, some of which were summarized by Louw et al. [10]. In 2007, Robertson et

al. proposed a web application framework separating structure and content in a generalized way [9]. This

allowed them to prevent both XSS and SQL injection vulnerabilities. Another approach separating untrusted

from trusted content was proposed by Nadji et al. [11]. Untrusted content is marked by the browser and its

capabilities can be limited. Until stated otherwise by a policy, the untrusted content is not able to use any

HTML tags. Google Caja offers a similar capability control by sanitizing and rewriting HTML, CSS, and

JavaScript [12]. Further research in the field of trusted and untrusted content separation was released 2009

by Louw et al. [13].

Three years before CSP, Jim et al. proposed and implemented a capability-controlling security policy for

browsers [14]. In order to whitelist scripts, the content had to be hashed with the SHA-1 algorithm. A

list of hashes was provided in the document, so that browsers could disallow all unintended and potentially

malicious scripts. Currently, a similar mechanism is discussed for inclusion in the CSP 1.1 standard1.

Furthermore, the proposal allowed parts of a document to be marked as untrusted, disallowing all kinds of

active content.

A different approach was presented 2012 by M. Heiderich [15]. Instead of relying on the user agent

to enforce a policy, a resilient client-side library was introduced. It can mediate access to critical DOM

properties and therefore limit the capabilities of a document with a policy.

CSP was proposed by Stamm et al. [6] in 2010. Despite the fact that it is a relatively new proposal,

it has gained much attention by the web security community. In 2011, Weinberger et al. evaluated a set

of “HTML security policies” [16]. While pointing out the effectiveness of these policies, they also argue

that these systems are still insufficient for the needs of web applications. CSP policy generation can be an

error-prone and laborious task [17]. Therefore, a lot of work has been done to automate the generation of

1N. Green, Proposal for script-hash directive in CSP 1.1, http://lists.w3.org/Archives/Public/
public-webappsec/2013Feb/0052.html, Oct. 2013

http://lists.w3.org/Archives/Public/public-webappsec/2013Feb/0052.html
http://lists.w3.org/Archives/Public/public-webappsec/2013Feb/0052.html

Related Work 4

policies. Ideas like the CSP Bookmarklet2 and CSP AiDer [18] try to address the issue on a site-to-site

basis and automatically create a CSP policy based on the observed markup at the time of the execution.

CSP AiDer suffers from the inability to observe dynamically added markup and both approaches do not

consider multiple subpages or a dynamic environment. A more robust approach, leveraging the Report-

Only functionality of CSP, has been implemented by P. Krawczyk3. UserCSP is a Firefox Add-on which

enables users to define a CSP for websites that have no such policy, yet [17]. Additionally, the extension is

able to infer a policy from the observed DOM.

2B. Sterne, CSP Bookmarklet, https://github.com/bsterne/bsterne-tools/tree/master/
csp-bookmarklet, Oct. 2013

3P. Krawczyk, Content Security Policy Builder, http://cspbuilder.info/, Oct. 2013

https://github.com/bsterne/bsterne-tools/tree/master/csp-bookmarklet
https://github.com/bsterne/bsterne-tools/tree/master/csp-bookmarklet
http://cspbuilder.info/

3. Fundamentals

The following sections elaborate on the fundamentals needed to understand this thesis. First, an overview of

the HyperText Transfer Protocol (HTTP) is given in Section 3.1. It serves as the basis for understanding the

concept of a (reverse) HTTP proxy as described in Section 3.2. This concept is of key importance for the

proxy proposed in Chapter 5. Then, languages directly relevant to the web and this thesis are introduced:

The HyperText Markup Language (HTML) is outlined in Section 3.3, Cascading Style Sheets (CSS) in

Section 3.4 and JavaScript in Section 3.5. A short summary of the JavaScript Object Notation (JSON) and its

derivative JSON with padding (JSONP) is given in Section 3.6. Section 3.7 introduces the Document Object

Model (DOM), a mediator between the elements and active content of a document. Before explaining attacks

the proposed proxy aims to mitigate (cf. Section 3.9), a key component of browser security is explained –

the Same-Origin-Policy (cf. Section 3.8).

3.1. HTTP

The Hypertext Transfer Protocol (HTTP) was invented 1989 by Tim Berners-Lee1. Today, it is one of the

prevalent protocols in the Internet used to transmit resources. Version 1.1, as outlined in RFC 2616 [19], is

the currently proposed standard, while version 1.0 [20] is still sparsely used. As most HTTP implementations

use TCP for communication, they suffer from the overhead of all required handshakes, when requesting

multiple resources. Most notably, HTTP 1.1 instructs clients to re-use connections, avoiding this overhead.

Version 2.0 focusses on performance enhancements, too. It uses Google’s SPDY protocol as the underlying

basis and still is in a draft status2. Essentially, HTTP controls the communication between user agents

(UAs), like browsers, and servers. It is a stateless protocol, meaning that two subsequent connections from

the same client cannot be associated with each other on a protocol level.

Section 3.1.1 will explain the protocol in detail. Then, the HTTPS protocol is briefly outlined in Sec-

tion 3.1.2. An exemplary HTTP communication is described in Section 3.1.3.

3.1.1. Protocol Details

HTTP 1.1 supports eight request methods which can be used to request resources and information.

• GET is the standard method to retrieve a resource without modifying it.

1T. Berners-Lee, Biography, http://www.w3.org/People/Berners-Lee/, Oct. 2013
2M. Belshe, R. Peon, M. Thomson and A. Melnikov, Hypertext Transfer Protocol version 2.0, http://tools.ietf.org/

html/draft-ietf-httpbis-http2-04, Oct. 2013

http://www.w3.org/People/Berners-Lee/
http://tools.ietf.org/html/draft-ietf-httpbis-http2-04
http://tools.ietf.org/html/draft-ietf-httpbis-http2-04

3.1 HTTP 6

• POST requests send data to the server which is eventually stored or used to modify other resources.

• A HEAD request only asks for the headers of a resource and is often used to check if cached resources

have changed.

• PUT requests ask the server more specifically for storing the sent data.

• The DELETE request method instructs the server to delete the associated resource.

• A TRACE request can be used to ask the server to return the request.

• OPTIONS requests are used to get the supported request methods for a URL, but also for so-called

“preflight requests”. These requests are used to check if the server accepts Cross-origin resource

sharing (CORS).

• At last, there is the CONNECT request method, converting the connection to a TCP/IP tunnel.

Status codes are used to indicate the condition of a request to a user agent. Each status code is a three digit

number and there are five classes of status codes. There are informational (1xx), success (2xx), redirection

(3xx), client error (4xx), and server error (5xx) status codes.

Every HTTP message consists of header and body, separated only by an empty line with a carriage return

(CR) and line feed (LF). The header contains key-value pairs which have to end in a CR and LF, too. While

HTTP headers mostly contain meta-information about the resource, the message body contains the actual

payload.

3.1.2. HTTPS

The Transport Layer Security (TLS) protocol (or its predecessor Secure Sockets Layer) tremendously in-

creases the security characteristics of HTTP. HTTP Secure (HTTPS) is the most commonly used protocol

combining HTTP with TLS. Through the use of cryptography, HTTPS messages can be protected from

eavesdropping. Most user agents have a list of Certificate Authority certificates which can be used to con-

firm the identity of a server. In theory, Certificate Authorities assure that this identity cannot be spoofed by

adversaries, while the past has proved this trust relationship to be3 difficult4. TLS provides the possibility

for client authentication, too.

3.1.3. Example

A HTTP request is shown in Listing 3.1. It uses the GET method to request “file.html” from “example.com”.

Furthermore, the host name is transmitted in the “Host” header, making it possible for a single web server to

distinguish and serve different websites. It is the only header an user agent is required to send in HTTP 1.1

3P. Bright, Another fraudulent certificate raises the same old questions about certificate authorities, http://
arstechnica.com/security/2011/08/earlier-this-year-an-iranian/, Oct. 2013

4T. Espiner, Trustwave sold root certificate for surveillance, http://www.zdnet.com/
trustwave-sold-root-certificate-for-surveillance-3040095011/, Oct. 2013

http://arstechnica.com/security/2011/08/earlier-this-year-an-iranian/
http://arstechnica.com/security/2011/08/earlier-this-year-an-iranian/
http://www.zdnet.com/trustwave-sold-root-certificate-for-surveillance-3040095011/
http://www.zdnet.com/trustwave-sold-root-certificate-for-surveillance-3040095011/

3.2 Proxy Servers 7

(apart from the method, file and version). The “User-Agent” header tells the server which user agent was

used to request the resource. No message body is sent as part of the request.

GET /file.html HTTP/1.1

Host: example.com

User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64) ...

Listing 3.1: HTTP GET request

An exemplary response to the request of Listing 3.1 is presented in Listing 3.2. As the status code

indicates, the resource was not found. The “Content-Type” header declares the error page to be HTML,

encoded with a UTF-8 character set. Furthermore, the name of the web server software is transmitted in the

“Server” header and the server’s current time in the “Date” header.

HTTP/1.1 404 Not Found

Content-Type: text/html; charset=UTF-8

Content-Length: 15

Date: Fri, 11 Oct 2013 20:02:31 GMT

Server: lighttpd

404 - Not Found

Listing 3.2: HTTP response

3.2. Proxy Servers

Proxy servers act as a mediator between clients and one or more servers. Initially, they were proposed as

a way to structure large distributed systems [21]. Today, they are used for a broad range of applications:

Since proxies conceal the real source address of a connection, they can be used to obtain anonymity in

computer networks. Furthermore, proxies are able to monitor all network communications due to their

role as a mediator between clients and servers. Naturally, these monitoring capabilities can also be utilized

to manipulate and filter traffic. One example of this are HTTP caching proxies, which cache some or all

observed resources [22]. If a client requests a cached resource, the proxy will directly respond with the

resource without involving the original server. This can reduce both network and server loads [23].

Proxy software strongly differs in approach and implementation. Socket Secure (SOCKS) proxies, for

example, are able to route arbitrary TCP and UDP traffic [24]. This thesis will focus on HTTP proxies,

which are only capable of routing HTTP traffic [22]. Forward and reverse HTTP proxies are explained in

the two subsequent sections.

3.2 Proxy Servers 8

3.2.1. Forward HTTP Proxies

Internet
...

client 1 client n

proxy server

internal network

response

request

Figure 3.1.: A forward HTTP proxy acting as a mediator between one or more clients from an internal
network and multiple web servers in the Internet

Forward proxies allow properly configured clients to connect to “origin servers”5. These “origin servers”

may be part of another computer network, such as the Internet. Figure 3.1 shows a forward proxy which

acts as a intermediate server between internal clients and the Internet. If the forward proxy is not part of an

internal network and accessible by arbitrary clients from the Internet it is called an open proxy.

3.2.2. Reverse HTTP Proxies

Internet
proxy server

internal network

response

request
web

server 1
web

server n...

Figure 3.2.: A reverse HTTP proxy acting as a mediator between clients from the Internet and one or more
web servers

In contrast to forward proxies, reverse proxies do not require any client-side configuration5. A reverse proxy

acts as if it provides the requested service by itself. It routes requests to one or more servers and sends all

responses back to the respective clients. Figure 3.2 presents a setup, hiding multiple web servers behind a

reverse proxy. Only the reverse proxy is allowed to communicate with clients from the Internet.

5The Apache Software Foundation, Apache Module mod_proxy, http://httpd.apache.org/docs/2.0/mod/mod_
proxy.html#forwardreverse, Oct. 2013

http://httpd.apache.org/docs/2.0/mod/mod_proxy.html#forwardreverse
http://httpd.apache.org/docs/2.0/mod/mod_proxy.html#forwardreverse

3.3 HTML 9

3.3. HTML

The HyperText Markup Language (HTML) was developed to structure documents in the web [25]. Nowa-

days, it is used widely, from native applications on mobile devices6 to browser extensions7. HTML spec-

ifications are governed by the World Wide Web Consortium (W3C). This radically changed with the de-

velopment of HTML5 [26], which was initiated by the Web Hypertext Application Technology Working

Group (WHATWG). Browser vendors founded the WHATWG as a response to the W3C’s plans to aban-

don efforts to evolve HTML 4.01 in favor of XML based standards like XHTML28. Since then, the W3C

compiled with the HTML5 specification and the WHATWG continues to work on HTML5, the “Living

Standard” [27]. This means that the standard can never be considered complete and will evolve forever.

HTML syntax consists of tags, comments and text. Tags are enclosed by opening and closing angle

brackets (“<” and “>”) and contain an element name. HTML elements are expressed with a so-called “start

tag” and an “end tag”. Depending on the element, an end tag can be omitted. Start tags can contain attribute

value pairs and elements can be nested, forming a tree structure (Section 3.7).

<!DOCTYPE html>

<html>

<head>

<title>Example</title>

</head>

<body>

Content of the body.

Hyperlink

</body>

</html>

Listing 3.3: HTML5 document

Listing 3.3 shows a HTML5 document. As seen in this example, elements can have multiple (or none)

child elements. A DOCTYPE tells browsers about the used markup language and version. While technically

not required by the HTML5 standard, the html, head and body elements outline the structure of a website.

If they are missing, the browser automatically adds them to the document. Elements of the head typically

contain meta-information about the document, most of which is not directly displayed in browsers, while

the body contains the visible content. The anchor (a) element can point to other resources and trigger the

navigation of the user agent when clicked.

6Firefox OS, https://developer.mozilla.org/en/docs/Mozilla/Firefox_OS, Oct. 2013
7What are extensions?, http://developer.chrome.com/extensions/index.html, Oct. 2013
8WHATWG, HTML - 1.6 History, http://www.whatwg.org/specs/web-apps/current-work/multipage/

introduction.html#history-1, Oct. 2013

https://developer.mozilla.org/en/docs/Mozilla/Firefox_OS
http://developer.chrome.com/extensions/index.html
http://www.whatwg.org/specs/web-apps/current-work/multipage/introduction.html#history-1
http://www.whatwg.org/specs/web-apps/current-work/multipage/introduction.html#history-1

3.4 CSS 10

3.4. CSS

Cascading Style Sheets (CSS) were developed to separate the structure of a document from its presentation.

While not limited to styling documents, CSS is primarliy used in combination with markup languages like

HTML. The standardization process of CSS is categorized into levels. Level 1 is superseded by CSS2.1 [28],

which is the main component of CSS Level 2. Level 3 is building on the same specification and extends it

in various areas [29, 30, 31, 32].

CSS features a similar data structure like the DOM, called the CSSOM9. It enables access to the style

sheets of a document with a well-defined API.

Section 3.4.1 elaborates on the syntax and precedence rules of CSS. Ways of embedding style sheets into

markup and general examples are given in Section 3.4.2.

3.4.1. Syntax

Style sheets may contain multiple rules, which can be separated into selectors and declaration blocks. One

or more selectors are used to identify elements, which should be styled by a declaration block. Selectors can

select every element (universal), types, pseudo-classes, pseudo-elements, attributes and IDs [29]. Each line

of Listing 3.4 shows one of the selector types. A declaration block is enclosed by curly braces and contains

property-value pairs. These pairs contain the actual styling information. Some properties can be inherited

from parent nodes.

* /* universal selector */

span /* type selector */

span:hover /* pseudo-class selector */

span::first-letter /* pseudo-element selector */

[attribute] /* attribute selector */

.classname /* class selector */

#idname /* ID selector */

Listing 3.4: CSS selector types

If two rules select the same elements and set the same properties, a precedence must be calculated. Se-

lector specificity is used as the main factor for this calculation. Type and pseudo-element selectors have

the lowest specificity. Class, pseudo-class and attribute selectors have a slightly higher precedence. The

highest specificity is held by ID selectors, only surmounted by inline style attributes and the !important

keyword. If two declarations have the same specificity, the latter is used.

3.4.2. Usage

Listing 3.5 shows a style sheet with two rules. First, the body element’s background is set to green and

its displayed font size to 20 pixels. Then, all elements with the ID “bold-title” or the class “someclass” are

9S. Pieters, G. Adams and A. Kesteren, CSSOM - W3C Editor’s Draft, http://dev.w3.org/csswg/cssom/, Oct. 2013

http://dev.w3.org/csswg/cssom/

3.5 JavaScript 11

selected. Text is displayed in a bold font in these elements. Furthermore, the rule is marked as important,

giving it a high precedence.

body {

background: green;

font-size: 20px;

}

#bold-title, .someclass {

font-weight: bold !important;

}

Listing 3.5: Two exemplary CSS rules

Style sheets can be embedded into HTML in three ways, as presented in Listing 3.6. When CSS code is

mixed with markup, it is called inline, as shown in the first line of the listing. In the second line an external

style sheet is loaded. An inline style attribute is demonstrated in the last line. Instead of using selectors,

these attributes are directly defined on the elements which should be styled.

<style>body { color:red; }</style>

<b style="color:green;">green text

<link rel="stylesheet" href="external.css">

Listing 3.6: Three ways of embedding CSS in HTML

3.5. JavaScript

JavaScript is an object-oriented programming language implemented in all major web browsers. It features

a prototype-based inheritance model and dynamic typing. The language specification is governed by Ecma

International and the current proposed version is ECMAScript 5.1 [33]. ECMAScript 6 is currently being

developed under the code name “Harmony”10. While JavaScript was originally designed to serve as a client-

side scripting language, it can be deployed as a server-side programming language, too [34].

There are four ways to embed JavaScript in HTML and each of them is shown in Listing 3.7. As with

CSS, there is inline and external JavaScript. The first line shows an external script. It will be fetched

from the URL and the markup parser will wait for the script to execute until it continues. This is also true

for the inline script in line two. External script execution can be deferred with the defer attribute. The

async attribute will continue markup parsing right away and execute the external script when it is ready.

Line 3 demonstrates an inline event handler, which will execute the JavaScript code when the button is

clicked. There are many different inline event handlers, but they can be generally identified by their prefix

“on”. Examples of this are “onmouseover”, “oncut” and “onfocus”. The last line of the Listing features the

10ECMA-262. 6th Edition / Draft September 27, 2013. ECMAScript Language Specification, http://people.mozilla.
org/~jorendorff/es6-draft.html, Oct. 2013

http://people.mozilla.org/~jorendorff/es6-draft.html
http://people.mozilla.org/~jorendorff/es6-draft.html

3.6 JSON 12

JavaScript pseudo protocol. This protocol can be used in various locations which expect an URL. In the

Listing, the JavaScript code will be executed after the link was clicked.

<script src="external.js"></script>

<script>alert(’inline’);</script>

<button onclick="alert(’eventhandler’);">click me</button>

click me

Listing 3.7: Four ways of embedding JS in HTML

JavaScript code can read and manipulate the DOM. A simple DOM manipulation is shown in Listing 3.8.

This enables JavaScript to manipulate the look and feel of a document. Furthermore, scripts are capable of

sending data to a server with XMLHttpRequests [35] and even open a bidirectional communication channel

to a server using the WebSocket API [36].

<div id="demo">

The Answer to the Ultimate Question of Life, the Universe, and

Everything?

</div>

<script>

var elt = document.getElementById(’demo’);

elt.innerHTML = ’42.’;

</script>

Listing 3.8: DOM manipulation in JavaScript

3.6. JSON

The JavaScript Object Notation (JSON) is derived from the ECMAScript programming language [37]. It

was designed to be a text-based and language-independent data interchange format.

Six data types are defined in the JSON specification. Strings are enclosed by double quotes and can con-

tain Unicode escape sequences, using JavaScript’s syntax (“\uXXXX”). Numbers are allowed to be integers

or in a floating point format. The precision is not determined by the specification. Boolean values can be

represented using the lower case keywords true and false. An Array contains other data types separated

by commas and is enclosed by square brackets. Objects map keys to values. Keys must be strings but values

can resemble any data type. Keys are separated from values with colons and key value pairs with commas.

This data type is enclosed by curly braces. The null keyword can be used to represent a value void of any

other data type.

{"string": "value", "boolean": true, "null": null, "number": 42,

"list of numbers": [1, 2, 3.14159]}

Listing 3.9: JSON data structure

3.7 DOM 13

Listing 3.9 presents an exemplary JSON data structure. It demonstrates every aforementioned data type,

showing that those can be mixed and nested at will.

3.6.1. JSONP

JSON with padding (JSONP) is exploiting a property of the web to achieve browser independent cross-

origin data sharing11. Reading data from other origins is normally prohibited by the SOP. JSONP is uses

the ability to embed resources from any origin without restrictions. A cross-origin resource has to wrap the

JavaScript data structure in a function call (the “padding”). Then, an embedding website can define this

callback function and embed the resource as a script. It will execute and pass the data to the previously

defined callback function. Reading the content of the embedded resource is not required anymore because

it passes its data voluntarily to any document defining a callback function. As JSONP uses real JavaScript

data types to pass data, the name is not fully accurate because JSON is not a subset of JavaScript but merely

derived from it12.

Listing 3.10 shows an example of a JSONP source, which is embedded by the code in Listing 3.11. In

this example, the callback function on b.com will receive the JavaScript object as its first parameter. It is

common practice to make the name of the callback function changeable through an URL parameter. An

URL query string “?callback=invoke”, for example, could set the callback function to “invoke” in such

implementations.

callback({"key": "value", "key2": [1, 2, 3.14159]});

Listing 3.10: JSONP source on a.com

<script>function callback(data) { /* handle data */ }</script>

<script src="http://a.com/jsonp"></script>

Listing 3.11: JSONP-embedding document on b.com

3.7. DOM

When a browser parses the markup of a document, it gradually builds up a tree structure of all elements.

This structure is called a Document Object Model (DOM) tree and all elements of the markup are called

nodes, including text nodes. The root of all nodes in a browser is the document object. The DOM allows for

dynamic changes to the structure and content of a document using a programmatic API. It exposes various

other information, like the location (URL) of the document, the cookies and so forth.

Some nodes of the DOM must be unique and are not allowed to occur more than once. This includes the

document object, which cannot be created by markup, but also the html, body and head elements. If any

of these elements occur more than once, they will be merged into one node.
11Defining Safer JSON-P, http://www.json-p.org/, Oct. 2013
12M. Holm, JSON: The JavaScript subset that isn’t, http://timelessrepo.com/

json-isnt-a-javascript-subset, Oct. 2013

http://www.json-p.org/
http://timelessrepo.com/json-isnt-a-javascript-subset
http://timelessrepo.com/json-isnt-a-javascript-subset

3.8 Same-Origin-Policy 14

Currently, the latest specification of the DOM is the DOM3 standard [38], but DOM4 is actively being

developed [39].

3.8. Same-Origin-Policy

Listing 3.12 shows an URL with all of its possible parts. Some parts of the URL can be omitted, such

as the authentication information (“username:password@”) and the port, which will default to 80. All

combined parameters, which occur behind the first question mark are called the query string. This excludes

the fragment identifier, separated by the number sign (“#”), which is special in the way that it will not be

sent to the server by user agents.

protocol://username:password@host:port/path/file.ext?param=val#fragment

Listing 3.12: Full URL example

A web origin is consisting of the preeminent characteristics of a URL, namely the protocol, host name

and port [40]. The concept of an origin is used by browsers to define a boundary which is essential to

web security. The mechanism enforcing this boundary is the Same-Origin-Policy (SOP). Active content,

such as JavaScript, is only allowed to cross this boundary on very rare occasions. These occasions often

require the resources of such a cross-origin communication to comply with the request. Without the SOP,

no secret could be safely transmitted or stored on a web application, undermining the security of any service

using authentication and eliminating all privacy. Adversaries could steal data from any web application if

they could manage to lure a victim on to a malicious page. As indicated above, the SOP contains many

exceptions, which exist due to legacy peculiarities and features of newer web standards [41]. Embedding

cross-origin images, for example, is possible without restrictions.

3.9. Attacks

This Section introduces attacks which are prevalent in today’s web and relevant to the proposed proxy. First,

data leakage is explained in Section 3.9.1. It is an important effect of various attacks, such as Cross-site

scripting, which is described in Section 3.9.2.

3.9.1. Data Leakage

Data leakage is not an attack itself, but rather can be the effect of one. In general, the term describes an

unauthorized transfer of information to a (potentially malicious) third party [42]. This very broad defini-

tion includes intentional as well as unintentional data leakage. While the information does not have to be

sensitive, it mostly is if an attack was conducted to obtain it.

An E-Mail advertising service, for example, may be interested in knowing if a spam mail was read. In

order to observe this, it could embed images into a HTML mail. When a victim opens the E-Mail, the mail

client might retrieve the images. As this sends a request to the server of the advertising service, it is giving

3.9 Attacks 15

a clear indication that the E-Mail was opened. Many mail clients protect from this data leakage by not

retrieving images of unknown E-Mails. Only after the user has deemed the mail to be benign, the requests

will be sent. In the web, the SOP prevents trivial data leakage.

3.9.2. Cross-Site Scripting

Cross-site scripting (XSS) belongs to the family of code injection attacks. Vulnerable web applications offer

attackers the possibility to inject (potentially malicious) client-side code. Since it is run in the context of

the web application, the SOP cannot prevent data leakage from happening. Consequently, an attacker is

able to utilize all capabilities of client-side languages like JavaScript. Data leakage is one of the potential

results of this vulnerability. Attackers might steal cookies, credentials and other private data. Otherwise,

since the complete DOM is susceptible to manipulation, an adversary can change the look of the website

(defacement). XSS vulnerabilities may arise from insufficient sanitization of user input or browser bugs.

These attacks cannot be thwarted by user agents, since the basic technologies used in the web offer no

possibility to separate structure from content [3]. Thus, a client cannot decide which part of the markup was

intended by the web application.

Class Description

Reflective Payload sent by one client and is directly reflected back

Persistent (or stored) Payload sent once and is served on subsequent visits

DOM-based Payload triggered by client-side code

Mutation-based Payload triggered by mutating DOM sinks

Table 3.1.: The four classes of XSS

Four classes of XSS are listed in Table 3.1. A XSS vulnerability is called reflected, if an user agent sends

the attack payload to a web server and it is reflected back in the code of the web application. Parameters

of the query string could, for example, be manipulated by an adversary. A vulnerable web application may

improperly sanitize the input and return it as a part of the markup. Such a carefully prepared URL could be

sent to a victim, enabling the attacker to leak private data. There are multiple ways of disguising the intention

of the malicious URL, including link shortening, redirections, social engineering [43], and so forth. If the

attack vector is saved and served on subsequent visits of the web application, it is called persistent. In

contrast to reflected XSS flaws, it may not require any interaction between attacker and victim. DOM-based

XSS vulnerabilities are caused by insecure client-side code [44]. In JavaScript, just a few sinks have been

identified, which can lead to this class of XSS13. Many DOM-based XSS vulnerabilities are hard to detect

on the server-side because the payload never leaves the client. A payload may, for example, be appended

to the fragment identifier of a URL and thus never sent to the server. The fourth class of XSS attacks is

called mutation-based XSS (mXSS) [45]. Properties like innerHTML enable developers to add markup

to the DOM. Browsers have to ensure that the markup does not break the DOM tree and therefore it will
13S. Di Paola, domxsswiki - Dom Xss Test Cases Wiki Cheatsheet Project, https://code.google.com/p/

domxsswiki/, Oct. 2013

https://code.google.com/p/domxsswiki/
https://code.google.com/p/domxsswiki/

3.9 Attacks 16

be normalized. This mutation of the original markup string can lead to covert vulnerabilities, which affect

all websites using innerHTML to output user content. Due to their nature, mXSS vulnerabilities must

be fixed by browser vendors, leaving many users with older user agents unprotected. Instead of fixing the

vulnerability, the effects can be mitigated with capability controlling mechanisms [45].

4. Content Security Policy

Content Security Policy (CSP) was proposed by Stamm et al. in 2010 and aims to be an additional defensive

layer for existing web applications [6]. Based on this work, the W3C Web Application Security Working

Group formed a specification [46]. CSP 1.0 is in the state of a W3C Candidate Recommendation since

November 15th 2012. Currently, a new proposal is being developed1, extending CSP in various ways, and

addressing some of the problems of version 1.0. A policy can be transferred as an additional HTTP header

of a resource or via a meta element in the markup of a document (experimental in CSP 1.1).

The core idea of CSP is to limit the capabilities of a document. resources are categorized into directives

which control where they can be loaded from and connect to. Section 4.1 explains the core concept of

CSP and Section 4.2 outlines all CSP 1.0 directives. A special mode of CSP, the “Report-Only” mode, is

explained in Section 4.3. Then, CSP 1.1 is compared to CSP 1.0 in Section 4.4. Finally, Section 4.5 outlines

the limitations of CSP and peculiarities of current implementations.

4.1. Concept

Using CSP, web applications can limit the capabilities of all served resources. Most notably, XSS attacks

can be mitigated by this policy when three factors are given.

1. Script and object sources must be tightly controlled. It might prove to be hard for an attacker to serve

a malicious payload from a whitelisted domain.

2. Inline code must be disabled, which is enforced by default. As inline code might be injected by an

attacker, the browser cannot decide upon its origin. Conversely, if a browser could tell apart benign

from malicious inline code, XSS could be mitigated automatically on the client side. Obviously, this

is not the case.

3. eval and eval-like constructs have to be disabled because they could lead to potential DOM-based

XSS vulnerabilities. Similar to inline code, these functions are disabled by default, too.

If these rules are enforced and no whitelisted URI can be compromised, an attacker may inject markup, but

cannot execute JavaScript code. While this mitigates traditional XSS, other attacks trying to achieve data

leakage might still work. An attacker is able to use CSS or other resource types for content extraction [47].

However, CSP allows to control each resource type employed in browsers. Additionally, the connection
1A. Barth, M. West and D. Veditz, Content Security Policy 1.1 - W3C Editor’s Draft, https://dvcs.w3.org/hg/

content-security-policy/raw-file/tip/csp-specification.dev.html, Oct. 2013

https://dvcs.w3.org/hg/content-security-policy/raw-file/tip/csp-specification.dev.html
https://dvcs.w3.org/hg/content-security-policy/raw-file/tip/csp-specification.dev.html

4.2 Directives 18

sinks of APIs like XMLHttpRequest can be limited to a small set of whitelisted URIs, too. This reduces the

attack surface of the web application substantially and tremendously limits the possibilities for data leakages

forced by an attacker.

4.2. Directives

Content-Security-Policy: default-src ’none’; script-src ’self’;

style-src example.com foo.com;

object-src *.cdn.example.com;

img-src *; media-src data:;

frame-src https://example.com;

connect-src: *

Listing 4.1: Example of a Content Security Policy header

Listing 4.1 shows an exemplary CSP. Policies consist of directives and source expressions, separated by

semicolons. Every directive can contain multiple source expressions which are separated by spaces. A

source can be a keyword (“keyword-source”), a protocol handler (“scheme-source”), an origin (“host-

source”) or a path level URI (“ext-host-source”). Generally, source expressions whitelist URIs and resource

types. Origins and URIs are allowed to contain wildcards (“*”), allowing a wide range of subdomains or

even all domains (as seen at the img-src directive in Listing 4.1). Single quotes always denote keywords

while all other values have to be parsed to get the type. There are two general keywords which can be used

by every directive: 'none' disables all resources of that kind and 'self' only allows resources to be

loaded if they have the same origin as the enforcing document.

Directive Possible values

default-src {scheme,host,ext-host}-source, 'self', 'none'

connect-src {scheme,host,ext-host}-source, 'self', 'none'

font-src {scheme,host,ext-host}-source, 'self', 'none'

frame-src {scheme,host,ext-host}-source, 'self', 'none'

img-src {scheme,host,ext-host}-source, 'self', 'none'

media-src {scheme,host,ext-host}-source, 'self', 'none'

object-src {scheme,host,ext-host}-source, 'self', 'none'

script-src {scheme,host,ext-host}-source, 'self', 'none', 'unsafe-inline',

'unsafe-eval'

style-src {scheme,host,ext-host}-source, 'self', 'unsafe-inline', 'none'

report-uri URI

sandbox allow-forms, allow-pointer-lock, allow-popups,

allow-same-origin, allow-scripts, allow-top-navigation

Table 4.1.: CSP 1.0 directives

4.3 Report-Only 19

Table 4.1 lists all CSP 1.0 directives and their possible values. default-src sets default values for all

directives except sandbox and report-uri. This allows resources of any kind to be loaded from the

whitelisted URIs. Instead, it might be desired to have a more granular control over single resource types.

While not a resource type itself, the connect-src directive limits the communication capabilities of ex-

ecuted scripts. Only whitelisted resources can receive a request from the protected document, using APIs

like WebSocket or XMLHttpRequest. Web fonts give web developers the ability to use nonstandard fonts

in layouts and designs [48, 49]. Their sources can be controlled with font-src. Frame and iframe

elements are able to embed other documents [26]. frame-src can limit the allowed document URIs. If a

img-src directive is employed, images must be whitelisted in this directive to be requested and displayed

in the document. This also includes images loaded by external resources like style sheets. Media elements,

for playing back audio and video sources [26], can be controlled by the media-src directive. Object

and embed elements can embed arbitrary resources [26]. Furthermore, they can be used to embed plug-in

content (like Adobe Flash). Since some plug-ins have similar capabilities as scripts, they offer data leakage

possibilities for attackers and hence can be controlled with the object-src directive. Scripts themselves

can be limited by script-src. Aside from whitelisting URIs, the directive can be used to allow inline

code and eval-like constructs. Allowing inline scripts with 'unsafe-inline' subverts the XSS mitiga-

tion of CSP, the browser could not tell the attacker’s inline code apart from the server’s. Nevertheless, this

can be used if the policy is deployed to serve other purposes. As eval and eval-like constructs can be used for

DOM-based XSS attacks2, the specification highly recommends to avoid whitelisting 'unsafe-eval',

too. Style sheets can be controlled by the style-src directive. Similar to scripts, inline styles are disal-

lowed by default. This can be relaxed with the 'unsafe-inline' keyword. CSP contains the sandbox

directive which mimics the sandbox attribute of iframe elements. This makes it possible to further reduce

the capabilities of the served document. The report-uri directive does not control a security mecha-

nism. Instead, it defines a single URI which will receive reports, containing detailed information of policy

violations. Structure and content of these reports is explained in Section 4.3.

4.3. Report-Only

Content-Security-Policy-Report-Only: script-src example.com;

report-uri /sink;

Listing 4.2: Example of a CSP Report-Only header

Besides the normal policy enforcement, CSP supports another mode of operation: In Report-Only mode no

rule will be actively enforced, but all violations of the policy will be reported. The sink of all reports can

be specified using the report-uri directive. If this directive is not specified, the browser neither reports

the violations nor enforces the policy. Instead of defining the report-uri in Report-Only mode, it can

also be employed in CSP’s regular mode. This allows for detection of violating resources during policy

enforcement.
2S. Di Paola, domxsswiki - Browser JavaScript execution sinks, https://code.google.com/p/domxsswiki/wiki/

ExecutionSinks

https://code.google.com/p/domxsswiki/wiki/ExecutionSinks
https://code.google.com/p/domxsswiki/wiki/ExecutionSinks

4.4 CSP 1.1 20

Listing 4.2 shows an example of a Report-Only header. Scripts are only allowed from “example.com”

and violation reports will be sent to “/sink”. The slash at the beginning indicates that this URI is pointing to

the same origin on which the protected document resides on. Reports are encoded in a JSON data structure

and sent via HTTP POST whenever a violation of the policy occurs. Listing 4.4 shows a sample report. It

can be observed on “/sink” when a browser navigates to a document with the markup shown in Listing 4.3,

using the CSP Report-Only header of Listing 4.2.

<!DOCTYPE html>

<html>

<head>

<title>Example document</title>

</head>

<body>

<script src="http://evil.com/hook.js"></script>

</body>

</html>

Listing 4.3: HTML document with a potential injection

{"csp-report":{"document-uri":"http://ourdomain.com/file.html",

"referrer":"", "violated-directive":"script-src example.com",

"original-policy":"script-src example.com; report-uri /sink;",

"blocked-uri":"http://evil.com"}}

Listing 4.4: CSP violation report

Violation reports consist of a single JSON data structure. Five key-value pairs are mapped to the “csp-

report” key of an enclosing JSON object. “document-uri” holds the full URL of the document in which the

violation occurred. Furthermore, the document’s “Referer” header is transmitted in “referrer”. In “violated-

directive”, the CSP directive, which was violated by the resource URI in “blocked-uri”, is stored. “original-

policy” contains the complete policy which protected the document.

Blocked same-origin URIs are submitted in the report with a file-level URI. On the contrary, only the

origin of cross-origin URIs is transmitted. This behavior is demonstrated by Listing 4.4 and is dictated by

the specification to prevent information leakage [46].

4.4. CSP 1.1

Since CSP 1.1 is still a W3C Editor’s Draft at the time of this writing, all features discussed here remain

subject to changes3.

3A. Barth, M. West and D. Veditz, Content Security Policy 1.1 - W3C Editor’s Draft, https://dvcs.w3.org/hg/
content-security-policy/raw-file/tip/csp-specification.dev.html, Oct. 2013

https://dvcs.w3.org/hg/content-security-policy/raw-file/tip/csp-specification.dev.html
https://dvcs.w3.org/hg/content-security-policy/raw-file/tip/csp-specification.dev.html

4.5 Limitations 21

A noteworthy change of CSP 1.1 is the possibility to define whitelist URIs up to file-level. Selectively

allowing only single scripts of a domain is not possible in CSP 1.0 [46]. This helps to further reduce the

attack surface of a web application while keeping backwards compatibility due to the CSP 1.0 specification

instructing implementations to ignore the path component of the URL.

Furthermore, CSP 1.1 allows CSP headers to be transmitted in a meta element in the markup. The

security implications of this are briefly discussed in Section 4.5.2.

One of the more prominent changes of the new proposal is the ability to define nonces. If a valid nonce

is found in the markup, the corresponding element will be allowed to load and execute. This can help to

developers to avoid the externalization of all inline scripts and styles but comes at a great risk. If an attacker

manages to guess or steal a valid nonce the CSP would be bypassed. This is risky considering that nonces

are part of the markup and thus, the DOM. An exemplary attack is presented in Section 4.5.2.

Multiple attacks on CSP 1.0 used HTML forms and the base element to extract data from web applica-

tions [50]. CSP 1.1 includes experimental form-action and base-uri directives, which can be used

to mitigate these attacks.

plugin-types is another new directive and restricts plug-ins to whitelisted MIME types, giving greater

control over embedded objects (previously only controlled by object-src).

Browsers can be prevented from sending a HTTP “Referer” header with the referrer directive. Four

keywords can be used to specify the browser’s behavior with respect to the referrer: never will completely

oppress the header while origin will only leak the document’s origin. default will keep the complex

default rules active and always instructs the browser to always send a referrer.

CSP 1.1 incorporates the non-standard HTTP header “X-XSS-Protection” in the reflected-xss di-

rective. It controls the behavior of client-side XSS filters and can be used to disable, enable or put the filter

into blocking mode. Blocking mode displays an empty page when the blacklist match occurs, while “nor-

mal” mode tries to sanitize the alleged evil code. Currently, only WebKit browsers (including the Blink fork

of WebKit) [51] and Internet Explorer4 natively implement such filters. In the Gecko family of browsers,

the implementation of a client-side XSS filter is still an open issue5. However, it is unlikely to be tackled

soon because of browser add-ons serving a similar purpose6.

4.5. Limitations

CSP has a number of downsides and limitations. Conceptual limitations of both CSP 1.0 and 1.1 are outlined

in Section 4.5.1. In theory, the specification dictates the security excellence of CSP. However, in practice,

web applications have to rely on the actual implementation. Therefore, Section 4.5.2 deals with some of the

limitations of current implementations in modern web browsers.

4D. Ross, IE 8 XSS filter architecture/implementation, http://blogs.technet.com/srd/archive/2008/08/18/
ie-8-xss-filter-architecture-implementation.aspx, Oct. 2013

5J. Ruderman, Bugzilla Bug 528661: (xssfilter) Heuristics to block reflected XSS (like in IE8), https://bugzilla.
mozilla.org/show_bug.cgi?id=528661, Oct. 2013

6G. Maone, NoScript Firefox extension, http://noscript.net/, Oct. 2013

http://blogs.technet.com/srd/archive/2008/08/18/ie-8-xss-filter-architecture-implementation.aspx
http://blogs.technet.com/srd/archive/2008/08/18/ie-8-xss-filter-architecture-implementation.aspx
https://bugzilla.mozilla.org/show_bug.cgi?id=528661
https://bugzilla.mozilla.org/show_bug.cgi?id=528661
http://noscript.net/

4.5 Limitations 22

4.5.1. Conceptual Limitations

As a CSP can whitelist resources, it is expressing trust in these resources. Conversely, if this trust relationship

is subverted by an attacker, the protection may be bypassed. In the worst case, a whitelisted script or plug-

in file might be compromised by an attacker. This would lead to a total bypass of the protection because

data leakage would be possible through redirection or similar methods. Depending on the policy, other

whitelisted resource types might also be used for an attack. Naturally, the probability of such an attack

is increased by whitelisting entire domains instead of file-level URIs. Consequently, the use of CSP 1.1

increases the security characteristics in regards to this attack because it allows for more granular policies.

The security implications of this are grave: JSONP, for example, is a critical resource type which may

be used for an attack – without compromising the source. As it is embedded as a script, it needs to be

whitelisted in CSP’s script-src directive. Usually, JSONP implementations allow a callback function

to be specified in the query string. This function name is prepended to the data the source emits. As query

strings are not considered by CSP, an attacker is able to change the function at will. Furthermore, since the

amount of scripts from the same whitelisted URI cannot be limited by CSP, it is possible to chain multiple

script elements pointing to the same JSONP source. In consequence, an attacker might be able to leak

data, using this chain and controlling the function calls. Furthermore, if the query string is output in an

improperly sanitized way, arbitrary JavaScript code can be injected to simplify the exploitation. Similarly,

file uploads to whitelisted origins can be used to bypass the protection. As many of such examples exist, the

attack scenario can be generalized: If a web application allows users to control the first characters of any

resource on a whitelisted URI, the CSP can be bypassed without compromising server-side files.

CSP 1.1 introduces a meta element for the definition of CSPs (cf. Section 4.4). Since it is part of the

markup, the element is prone to injection attacks occurring in the prepending code. Listing 4.5 shows an

exemplary attack. It uses a HTML comment to wrap the meta element and prevent it from being parsed.

The specification tries to counter this with enforcing the meta element’s position to be in the document’s

head, where injections are less likely to occur. However, the possibility of an injection still exists.

<!DOCTYPE html>

<html>

<head>

<script>xss()</script><!--

<meta http-equiv="content-security-policy"

content="default-src ’none’">

...

</head>

...

</html>

Listing 4.5: Bypass of a CSP delivered in a meta element with an open comment

It should be noted that CSP relies on the Domain Name System (DNS), just like the SOP. In consequence,

it is vulnerable to the same attacks. Multiple attacks against the DNS were published in the past [52, 53].

4.5 Limitations 23

4.5.2. Limitations of Implementations

There is a class of attacks, introduced by implementation bugs, which cannot be foreseen by the specifica-

tion. These may bypass the security of a CSP partially or completely. In the course of writing this thesis,

one such bug was found7: An attacker can make use of the session restore mechanism in Mozilla Firefox

up to version 27 to completely bypass the CSP of a web application. When navigating to a data-URI via a

hyperlink, the context of the parent site is inherited in Firefox. This means that the document constructed

from the data-URI is not restricted by the SOP when trying to access DOM properties of the parent page

(like cookies). This is true for the CSP of the parent site, too. Another trait of Firefox is that when a crash

or restart occurs, the last browsing session will be restored. This session restore mechanism forgets about

the CSP, when restoring a data-URI, making it an exploitable bypass. An attacker can frame the victim

site and lure a user into clicking the injected data-URI hyperlink containing the payload. This navigation

is detectable by the parent frame which can then crash the browser with an unrelated exploit. Finally, the

session restore mechanism will re-establish the browsing session, giving the malicious code full access to

the victim site.

The nonce feature, introduced in CSP 1.1, suffers from the lax parsing of browsers. Unclosed HTML tags

can be used to “steal” the nonce from a legitimate element in Chrome, up to the latest version (29 at the time

of this writing). This can be used to execute arbitrary JavaScript code when an injection occurs before a

whitelisted script element as shown in Listing 4.6. Other variations of this attack are imaginable. As the

HTML5 specification requires such lax parsing rules [26], this problem will most likely persist and emerge

in other browsers, too.

<script src=//injected.url/ <script nonce="value">[...]</script>

Listing 4.6: Injected script element “stealing” the nonce of a legitimate script

Implementation bugs are not always critical to security. Firefox completely dismisses file- and path-level

URIs in policies8. According to the CSP 1.0 specification the origin of such URIs should be whitelisted,

ignoring the path or file component. Nevertheless, this bug prevents strict policies, as defined in Section 5.1

of this thesis, from working in Firefox.

7N. Golubovic, Bugzilla Bug 911547: data-URI + Firefox restart = CSP-bypass, https://bugzilla.mozilla.org/
show_bug.cgi?id=911547, Oct. 2013

8N. Golubovic, Bugzilla Bug 916054: URLs with path are ignored by FF’s CSP parser, https://bugzilla.mozilla.
org/show_bug.cgi?id=916054, Oct. 2013

https://bugzilla.mozilla.org/show_bug.cgi?id=911547
https://bugzilla.mozilla.org/show_bug.cgi?id=911547
https://bugzilla.mozilla.org/show_bug.cgi?id=916054
https://bugzilla.mozilla.org/show_bug.cgi?id=916054

5. Reverse HTTP Proxy

This Chapter describes a reverse HTTP proxy called “autoCSP”. It automatically generates policies and

externalizes inline code for all served documents. Section 5.1 outlines the design goals and choices of

the proxy. Implementation details are explained in the following sections, starting with the first mode of

operation – the learning mode – in Section 5.2. Finally, Section 5.3 describes the locked mode in detail.

5.1. Design

Internet
autoCSP

internal network

response
+CSP

request
web server

request

response

Figure 5.1.: Core idea of autoCSP

Figure 5.1 presents the core idea of the reverse HTTP proxy. An arbitrary web application can be locked

behind the proxy and will be automatically protected by a strict CSP. A strict policy shall be defined to fulfill

three requirements:

• It must include all resource-controlling CSP directives (explicit or implicit via default-src).

• Only resources needed by the respective document may be whitelisted. Thus, a complete domain

should never be contained.

• It may not use any unsafe keyword, like, for example, 'unsafe-inline'.

While the policy is required to be strong, it should not break website functionality. It may lower the

acceptance of the protection mechanism, if web applications have to be changed to work with the proxy.

Therefore, the proxy has to fix CSP-incompatible code patterns automatically. This leads to the following

design goals:

5.1 Design 25

1. The proxy should be transparent to clients and web applications.

2. All HTTP responses must be protected by a CSP.

3. Policies have to be automatically inferred and be strict.

4. autoCSP must ensure that enforced CSPs do not break the proxied web application.

Reverse proxies may have, but do not necessarily have to have knowledge of the proxied web application.

Satisfying the first design goal, autoCSP treats the web server and all clients as black boxes. Hence, the

reverse HTTP proxy can be deployed without modifying the web application’s code. Despite being a major

advantage, this property of the proxy also complicates the policy generation process tremendously. Instead

of knowing which parts of the markup are intended by the web application, the proxy must infer this knowl-

edge. This situation is comparable to a web browser trying to tell the web application’s markup apart from

injected code. It is simply not possible without additional information as evidenced by all the content injec-

tion attacks possible in the modern web (cf. Section 3.9). However, since the proxy is bound to protect only

one web server, it is feasible to learn the structure of the web application before protecting it. While this

might be seen as a violation of design goal number two, in fact, it is not. This is explained in Section 5.1.3.

Two modes of operation are introduced in the following sections. Section 5.2 covers the learning mode.

In this mode, the proxy observes resource URIs and attempts to externalize all inline code. Section 5.3

describes the locked mode. It forms strict policies from the previously observed resource URIs and enforces

them, while the externalized code is used to retain the functionality of the web application. Switching

between the two modes is possible at any time but requires the proxy to be manually restarted. This raises

the bar for adversaries because command execution on the proxy server is a prerequisite to switch to the

(unsafe) learning mode.

Since CSPs employed by the web application itself might interfere with automatically generated policies,

the proxy will discard all CSP headers of the original HTTP response.

Enforcing strict policies requires the use of CSP 1.1, since only this version allows for file-level URIs (cf.

Section 4.4). While in theory the protection of the proxy is browser agnostic, only the Chromium browser

family largely implements CSP 1.11.

5.1.1. Software Architecture

Since the proxy was implemented in the Python programming language2 using the libmproxy library3, it

handles parallel connections with threads [54]. Furthermore, it is capable of serving resources via both

HTTP and HTTPS. Data persistence is achieved with SQLite4, requiring no manual database setup.

1F. Beaufort, https://plus.google.com/100132233764003563318/posts/fLRLPHeiAAV, Oct. 2013
2Python Programming Language, http://www.python.org/, Oct. 2013
3A. Cortesi, libmproxy: mitmproxy as a library, http://mitmproxy.org/doc/library.html, Oct. 2013
4SQLite, http://www.sqlite.org/, Oct. 2013

https://plus.google.com/100132233764003563318/posts/fLRLPHeiAAV
http://www.python.org/
http://mitmproxy.org/doc/library.html
http://www.sqlite.org/

5.1 Design 26

Event Description

db_init New database created

request HTTP request from a client

response HTTP response of the server

Table 5.1.: Internal events

For the core components of the proxy, an event-

driven architecture was chosen. Table 5.1 lists all ob-

servable internal events. So-called interceptors may

subscribe to the events and will be called when such

an event occurs. They will be executed both in learn-

ing and locked mode, but can be limited to one of

them. Every event can have multiple interceptors,

which are called in the order they are defined in the global settings file of the proxy. If an inter-

ceptor wishes to stop the following interceptors from executing, it can raise a special exception called

StopEventPropagation. The next paragraph will elaborate on the observable events and describe use

cases.

A “db_init” event occurs when no database could be found on proxy startup. In that case a new database

will be created and all interceptors subscribed to this event are given the possibility to recreate the needed

database tables. “Request” events emerge when the client sends a HTTP request to the proxied web server.

This request can be modified at will and is forwarded to the web server after all subscribed interceptors

were executed. Instead of transmitting the request to the web server, an interceptor may decide to directly

answer the client. This is, for example, used by the web interface presented in Section 5.2.3. A “response”

event occurs when the proxied web server emits a HTTP response. This response can be modified by

interceptors and will be forwarded to the respective client afterwards. Various content and header injections

are conducted using this event, including the adding of the CSP headers and injecting scripts into the served

document.

5.1.2. Database Layout

Name Description

inline Externalized inline code

policy Collected CSP rules

violations CSP violation reports

warnings Web interface warnings

Table 5.2.: Database tables

All database tables used by the proxy are listed in Ta-

ble 5.2. As mentioned before, inline code has to be

externalized to retain the functionality of the web ap-

plication. Hence, the mechanism presented in Sec-

tion 5.2.2 stores inline code in the “inline” database

table. Table 5.3 presents the data structure used to

save inline code. Two IDs are used to identify a

database record: “id” is a unique ID which allows

for global identification in “inline”. Moreover, it may be desirable for the proxy to associate inline code

snippets originating from the same request. For this reason a 32 byte long alphanumeric string is saved in

“request_id”. Externalized code must only be executed on the URI it was observed on, thus it is saved in the

“document_uri” field. There are multiple types of inline code, for instance CSS style attributes and inline

event handlers. “type” associates an abbreviated type to the code, which is stored in “source”. This code

is hashed with the SHA256 algorithm for reasons explained in Section 5.3.2 and the hash is saved in the

“hash” field. Duplicate entries in the database are avoided by forcing each (“document_uri”, “type”, “hash”)

5.1 Design 27

tuple to be unique.

Field Description
id Unique ID
document_uri URI of the document
type Type of inline code
source Externalized source code
hash SHA256 hash of the code
request_id Request-identifying ID

Table 5.3.: Data structure of externalized code

Field Description
id Unique ID
document_uri URI of the document
directive Effective CSP directive
uri Observed resource URI
request_id Request-identifying ID
activated Rule activation status

Table 5.4.: Data structure of policy rules

Policy generation is another core mechanism of the proxy. The “policy” database table contains the

observed resource URIs and their respective CSP directives. This data structure is shown in Table 5.4 and

will be referred to as a policy rule. Analogous to the “inline” database table, the data structure can be

identified by “id” and “request_id”. Furthermore, it also features a “document_uri” field. Policy rules are

limited to the document they were gathered from, just as externalized code. If this would not be the case,

a design goal of the proxy would be violated. The design goal states that every policy must be strict and

hence not whitelist any unnecessary URIs. Obviously, this is violated, if two parts of the web application

use differential resources and policy rules are not bound to a document URI.

As all resource types can be categorized into CSP directives, the effective directive for the policy rule

is stored in “directive”. Arguably the most important field of the data structure, “uri” stores the observed

resource URI. Same-origin URIs are stored without the origin. This has a major advantage: When the

proxy is changed to protect the same web application on a different domain, the only string which has to be

changed is a setting value, describing the current origin of autoCSP. Rules are never deleted by the proxy but

merely deactivated with the “activated” flag in the data structure. To avoid duplicate entries in the database

each (“document_uri”, “directive”, “uri”) tuple has to be unique. This is enforced on the database level.

In “violations” all violation reports of the locked mode are stored. They can be used to spot errors in

the case CSPs still break website functionality despite all precautions. When a problem cannot be resolved

automatically by the proxy, it will store a message in the “warnings” table. Both database tables are used to

display information in the web interface (cf. Section 5.2.3).

5.1.3. Deployment

As a result of its design, the proxy is highly prone to attacks in learning mode (cf. Section 5.2). Thus, a

two phase life cycle of the proxy may be advantageous. In the first phase, the proxy has to be protected

from unauthorized access because it is deployed in learning mode. Access control can be achieved with

the built-in HTTP Basic Access Authentication. Trusted users or automated user agents have to browse the

proxied web application in this phase. By the time a good (or complete) coverage is reached, the locked

mode can be activated. Finally, access to the proxied web application can be granted to all user agents. Note

that the web application must be hidden behind the proxy at all times for the protection to be effective.

5.2 Learning Mode 28

Already existing web applications require practical deployment strategies because access cannot simply

be limited in learning mode. Consecutively, two deployment strategies will be described. The biggest risk

of every deployment method is to expose malicious code to the proxy in learning mode. With this in mind,

the optimal way of deploying the proxy is to use an isolated copy of the web application during the learning

phase. Unchallengeable policies can be obtained with this method, making up for the effort which has to be

put into creating a working copy of the website. A less preferred strategy is a parallel deployment. While

leaving access to the web application open, the proxy can be deployed on a different origin. Although access

to the proxy can be strictly limited, an adversary might be able to subvert the protection. If a persistent XSS

vulnerability is actively being exploited, the trusted user agents, browsing the proxied web application, will

trigger the payload. Thus, the proxy will whitelist the attacker’s payload.

Summing up, the proxy should be only accessible to all clients in locked mode. If this requirement is

fulfilled, design goal number two is not violated. All HTTP responses seen by regular clients are protected

by a CSP.

5.2. Learning Mode

Learning mode is one of the proxy’s two modes of operation. In this mode, the proxy tries to obtain strict

CSPs. This policy generation strategy is described in Section 5.2.1. Furthermore, it externalizes inline code

for use in the locked mode (cf. Section 5.3), as explained in Section 5.2.2. Details of the web interface are

covered in Section 5.2.3.

If an adversary obtains access to the proxied web application in this mode, the protection of the proxy

may be subverted. A successful content injection attack will not be mitigated by the proxy. Instead, it will

lead to a compromised policy, allowing the attacker’s payload to execute in all modes. This is because the

proxy completely trusts the markup while in the learning mode. All markup in this phase is subject to policy

generation and code externalization, albeit its origin. Therefore, a strict access control has to be in place

when this mode is active.

Header name Value

Expires -1

Pragma no-cache

Cache-Control no-cache, no-store, must-

revalidate

Table 5.5.: Cache-disabling HTTP headers

Resources, which are not directly fetched from the

proxy, can falsify results in this mode. This is because

the proxy adds new headers to all resources, as ex-

plained in Section 5.2.1. These headers would not be

obtained by user agents when they use resources from

the cache. Caching is therefore disabled in learning

mode. Table 5.5 shows the caching-related headers

used to achieve this. Additionally, the “ETag” and

“Last-Modified” headers from the web server’s response are discarded to further prevent caching. However,

this problem cannot be completely mitigated by using headers since user agents not receiving the headers

was the problem in the first place. After all, the user agent’s cache has to be cleared before browsing the

web application in learning mode.

5.2 Learning Mode 29

5.2.1. Policy Generation

Policy generation is one of the two core mechanisms of the reverse HTTP proxy, the other one being inline

code externalization (cf. Section 5.2.2). Amongst other possible approaches, the proxy’s actual strategy for

generating policies is described in Section 5.2.1.1. The implementation split into two parts: Section 5.2.1.2

explains the base policy generation and Section 5.2.1.3 a policy refinement mechanism.

Browsing the web application in this mode incrementally builds up rules for internal URIs which can be

formed into a restrictive CSP in locked mode.

5.2.1.1. Strategy

Three policy generation strategies were considered for the proxy. It turned out that no approach is adequate

on its own for the use case of autoCSP. Instead, a hybrid approach is presented at the end of this Section. Pol-

icy generation can generally be achieved by observing all resource URIs embedded in a document and their

type. A document could, for example, contain an image from the URI “http://example.com/img.png”. Ap-

parently, this information is sufficient to categorize the resource into the correct CSP directive and whitelist

the respective URI.

• A naive policy generation strategy would observe markup directly in the proxy to obtain the resource

URIs. All traffic passing by the proxy could be scanned for markup. This markup could be parsed,

using one of the multiple parsing5 libraries6 available for Python. Then, the constructed DOM may

be traversed by an algorithm searching for resources and storing them in the database. In spite of

being straightforward, this approach suffers from two major downsides. First, since parsing libraries

do not implement a full browser stack, active content is not executed. Potential changes to the DOM

at runtime, such as the addition of a resource, could not be observed. As a result, the generated policy

may be incomplete. Secondly, parsing libraries might interpret the markup differently than browsers.

If a mismatch happens, this may again lead to incomplete CSPs.

• Another policy generation strategy uses the Report-Only functionality of CSP to build policies. This

solution is elegant: It makes good use of the trusted clients visiting the web application and leaves the

interpretation of the markup completely to their user agents. Parsing mismatches are impossible (or at

least for the used browser family), since the browser’s own understanding of the markup is leveraged.

Violation reports contain, amongst other information, the URI and the violated CSP directive of a

resource. This is sufficient to generate a policy. Moreover, any future additions to the web platform

will require no changes to the proxy’s code if the format of the reports stays the same. Despite having

many desirable traits, the Report-Only functionality is not optimal for the use case of the proxy. As

explained in Section 4.3, violation reports lack file-level URIs in case of cross-origin resources. An

analysis of the Alexa top 1000 most popular websites showed that 82 percent of the observed resources

5Beautiful Soup, http://www.crummy.com/software/BeautifulSoup/, Oct. 2013
6html5lib, https://github.com/html5lib/html5lib-python, Oct. 2013

http://www.crummy.com/software/BeautifulSoup/
https://github.com/html5lib/html5lib-python

5.2 Learning Mode 30

were embedded from other origins (cf. Appendix A.1). To sum up, if relying on this policy generation

strategy only, the proxy would not be able to create strict policies for many modern web applications.

• The last policy generation strategy considered for the proxy, was to use the browser itself. Instead

of prompting browsers to provide the desired information through the Report-Only functionality, the

proxy can inject a script into every document. Parsing mismatches are likewise impossible using

this method because the script can use the DOM of the browser. Unlike violation reports this policy

generation strategy enables the proxy to obtain file-level URIs of cross-origin resources. An injected

script can simply traverse the DOM. Since all resource URIs are exposed by properties of the DOM

or the CSSOM, they can be read by the script. However, there is a downside to this method. As all

scripts of a document, the injected script is bound to the security boundaries the browser enforces. If a

DOM property contains a cross-origin URI which only redirects to another URI, the script can neither

follow the redirection nor reliably detect it. CSP requires both the redirecting URI and the target URI

to be whitelisted. Therefore, this may again lead to incomplete policies.

base policyCSP violation
report

user
agent 1

user
agent n

...

trusted user agents

refined policycross-origin
ressources report

Figure 5.2.: Hybrid policy generation strategy

Due to the benefits of the latter two techniques, a hybrid strategy was chosen. A base policy is obtained by

injecting a CSP Report-Only header into every served document and collecting all violation reports. These

reports already contain file-level same-origin resource URIs. Instead of discarding the deficient cross-origin

URIs, they will be saved to the database. An injected script tries to refine these cross-origin URIs by

traversing the DOM. If the script does not succeed in doing so, the correctness of the policy still is ensured

by the URIs obtained through the violation reports. A combination of both techniques can be used to reliably

detect redirections (cf. Section 5.2.1.2). Figure 5.2 illustrates the general policy generation strategy of the

proxy.

5.2.1.2. Base Policy Generation

Base policies are obtained with the help of CSP Report-Only headers. In learning mode, every resource

will be served using this technique. While ignored for all static resources, the header is enforced in docu-

ments. As explained in Section 4.3, the browser will send violation reports to the sink specified with the

report-uri directive. These reports can be used to gather the rules needed for a policy.

5.2 Learning Mode 31

Content-Security-Policy-Report-Only:

base-uri ’none’; connect-src ’none’; font-src ’none’;

form-action ’none’; frame-src ’none’; img-src ’none’;

media-src ’none’; object-src ’none’; script-src ’none’;

style-src ’none’;

report-uri /_autoCSP/_/report?id=Qr9T37QQyojjyU3R5wnyyk6Js7HbjDAH

Listing 5.1: CSP Report-Only header for unknown URIs

Two types of Report-Only headers are generated by the proxy in order to collect violation reports. List-

ing 5.1 shows the injected header for unknown document URIs. If a client visits a proxied URI which the

proxy did not collect information about before, this policy will be used. Instead of whitelisting resources,

the policy is disallowing almost everything. Accordingly, violation reports will yield detailed information

about the violated directive. If just default-src would have been set to 'none', browsers would report

the violated directive to be default-src. It may even be impossible to infer the correct CSP directive if

this information is not offered by the report. However, the injected header ensures that reports will contain

the correct CSP directive. A request ID is appended to the report-uri to uniquely identify all resource

URIs gathered in the current request (cf. Section 5.1.2). For all document URIs known to the proxy, the

policy of Listing 5.1 will be supplemented by already collected information. All observed resource URIs of

the document will be whitelisted in subsequent CSP Report-Only headers. This suppresses violation reports

for known resources on successive visits of the same URI. Note that this still enables the proxy to gather

information about dynamically added scripts which might not have been observed on a previous visit of the

document.

valid report? discardno

blocked-uri
same-origin?

yes

cut origin from
blocked-uri yes already in database

with activated=0?no

blocked-uri has
query parameters?

cut query
parameters yes

store warning
in database

is blocked-uri data
sink?

no

disable all file-level
ressource URIs

re-enable
deactivated report

yes

do file-level rules
exist?

store in database

no

set document-uri to
'learn'

yes

 no

set activated=0

yes

Browser

violation report

Figure 5.3.: Control flow of the report sink

5.2 Learning Mode 32

When receiving a violation report, the the web interface will store the information in the data structure of

Table 5.4. This part is called the report sink. Most fields of the data structure have been chosen to closely

resemble the values of the violation report. Thus, “document-uri” of a report maps to “document_uri” in

the data structure and the “violated-directive” will be stored in “directive”. “blocked-uri” is the essential

information the proxy wants to collect and it is copied to the “uri” field. Figure 5.3 illustrates the control

flow, which is explained in the following paragraphs.

First, the algorithm deals with all sorts of malformed data and discards violation reports with insufficient

information. Such reports are sent, when, for example, inline code violates the injected header. These reports

lack a proper “blocked-uri” value. Then the algorithm branches based on the origin of the blocked URI.

Same-origin URIs are first checked for query strings. Query parameters are ignored by CSP (cf. Sec-

tion 4.2) and thus can be removed from the URI. Since they mostly denote dynamic resources with content

that is changing according to the parameters, they can even pose a security risk. If the query parameters get

reflected in the output without proper sanitization, there is the risk of allowing a potentially unsafe script

in the generated CSP. Therefore, a warning is stored in the database, when a query string is observed. If a

resource of the web interface is encountered (cf. Section 5.2.3), the document URI of the data structure is

set to “learn”. All rules with this document URI will be whitelisted in the Report-Only headers, but only in

learning mode. This way, injected resources from the back end, as used by the policy refinement mecha-

nism, are handled gracefully by the proxy and do not need any hard coding in the source code. Note, that all

document URIs normally start with a slash, so that the special value cannot interfere with regular document

policies. At the end of the execution path, the data structure is stored in the database.

Cross-origin URIs have to be checked more thoroughly. The report sink generates base policies, meaning

that cross-origin URIs will be refined by another sink afterwards (cf. Section 5.2.1.3). All cross-origin URIs

of the report sink will be disabled when a refinement is conducted. In the case that the refinement was

correct, no violation report of the cross-origin URI will be sent on subsequent visits of the same document.

This is because the CSP Report-Only header will be filled with the already observed URIs. However, if

these refinements yield an incomplete policy, the browser will send a violation report. In this case the report

sink has to undo the policy refinements. For this reason, the proxy first queries the database for a disabled

record with the same (“document_uri”, “directive”, “uri”) tuple but a different request ID than the current

one. If a database record was found, the report sink infers multiple facts from this: First, the document has

already been visited by a browser and a policy has been stored in the database. This can be concluded from

the fact that the database record has a different request ID. Secondly, the policy must be incomplete because

a violation report was sent to the sink. Thirdly, since there exists a disabled rule, the policy refinement must

have broken the policy. To fix this, all rules with file level URIs, matching the reported origin, document

URI and violated directive, will be deactivated. Additionally, the disabled rule will be reactivated. If no

disabled record with a matching tuple was found in the first place, the proxy will check for a race condition.

It might happen, that the refinement takes place before the base policy is set. This can be detected by

querying the database for file-level URIs with the same origin, request ID, directive and document URI. A

matching request ID would indicate that the refinements were indeed just added. Instead of discarding the

report in this case, it still is stored in the database, but with a disabled status. If no such record is found, the

5.2 Learning Mode 33

data structure is saved without changing the status.

5.2.1.3. Policy Refinement

Element name Directive Action

* img-src If available, get background images

APPLET object-src Get code, archive, codebase attributes

AUDIO media-src Get src attribute

BASE base-uri Get href attribute

BUTTON base-uri Get formaction attribute

EMBED object-src Get src attribute

FORM form-action Get action attribute

FRAME frame-src Get src attribute

IFRAME frame-src Get src attribute

IMG img-src Get src attribute

INPUT form-action Get formaction attribute

LINK img-src If icon, get href attribute

LINK style-src Trigger style check

OBJECT object-src Get data attribute

SCRIPT script-src Get src attribute

SOURCE media-src Get src attribute

STYLE style-src Trigger style check

TRACK media-src Get src attribute

VIDEO media-src Get src attribute

Table 5.6.: Nodes visited by policy.js and associated actions

Policy refinement is conducted in two steps: First, a script is injected into every served document. This

script will be referred to as policy.js. It will send reports with observed cross-origin URIs to the policy.js

sink. Secondly, the sink will store the URIs and disable all cross-origin URIs obtained with the base policy

generation.

Only policies of resources with “text/html” and “application/xhtml+xml” MIME-types are refined, re-

gardless of charset. The policy.js script is injected into these documents. It should be the very first script

on the page so that it can hide itself from other active content on the page. Two regular expressions are

used to find either the end of the opening head-tag or the beginning of the opening title-tag. If both tags are

not present in the markup the script will just be prepended to the document’s code, risking to put visiting

browsers into Quirks Mode7. An attribute containing the request ID will be added to the first script tag, mak-

ing it possible for the script to obtain the request ID. After reading out this attribute, the script immediately

7L. H. Silli, No condition comments before the DOCTYPE, http://xn--mlform-iua.no/blog/
no-condition-comments

http://xn--mlform-iua.no/blog/no-condition-comments
http://xn--mlform-iua.no/blog/no-condition-comments

5.2 Learning Mode 34

deletes itself from the DOM. All code is wrapped in an anonymous function to prevent leaking variables

into the global execution scope. These precautions are taken because otherwise policy.js might interfere

with other scripts on the website, possibly changing behavior.

After the “load”-event of the window object, the injected script traverses the complete DOM. While

visiting all nodes, it executes the actions presented in Table 5.6. All future changes to the DOM are perceived

by a Mutation Observer [39], which will call the according actions, too. Most actions only return an attribute

of the currently traversed node, containing a resource URI. Other functions check for conditions to be true

before returning a value: Since link elements can have many different functions [26], one action first

checks if it contains an icon, before returning the resource URI. Other uses of the link element include

embedding style sheets. Due to the ability to import other style sheets from within a style sheet (using

the @import statement), a more elaborated check has to be performed. A recursive algorithm checks the

CSSOM for yet unknown style sheets. In detail, it reads all style sheets and recursively follows all @import

statements until no more can be found. The first action listed in Table 5.6 applies to all elements. Therefore,

every node will be checked for having a background image.

As can be seen from the Table, connect-src rules are not inferred from the DOM. Instead, they are

directly obtained by overwriting all JavaScript APIs which can violate the directive. In consequence, the

XMLHttpRequest and WebSocket APIs have been changed to report cross-origin destinations to the policy.js

sink. This happens transparently for the calling code.

Whenever the injected script finds cross-origin URIs, it sends a JSON-encoded data structure to the pol-

icy.js sink. An exemplary data structure is shown in Listing 5.2. As can be seen from the example, resources

are directly categorized into CSP directives. Furthermore, each report of the injected script is able to trans-

port multiple cross-origin resource URIs.

{"script-src":["http://a.com/first.js","http://b.com/second.js"],

"img-src":["http://a.com/image.png"]}

Listing 5.2: JSON-encoded data structure used for communication between policy.js and its sink

After receiving this data structure in the policy.js sink, the proxy will scan it for errors. If the data is

malformed, it is discarded. Each received URI will be written to the database separately if it is not a

duplicate. Then, an attempt is made to refine already existing policy rules. If the database contains records

with the same “document_uri” and “directive”, their “uri” will be compared to the origin of the each stored

URI. If a match occurs, it is highly likely that the record contains an URI gathered with the CSP Report-Only

header. As the matching policy rule does not have a file-level URI, it is disabled by the policy.js sink. There

is the possibility that this is leading to incomplete policies. These are detected and resolved in the report

sink (cf. Section 5.2.1.2).

5.2.2. Code Externalization

CSP gains its effectiveness against XSS from disallowing inline code and eval-like constructs (cf. Sec-

tion 4). This poses a problem to the code bases of most web applications today. An analysis presented in

Appendix A.1 shows that 96 percent of the Alexa top 1000 websites use CSP-incompatible code patterns.

5.2 Learning Mode 35

Section 5.2.2.1 describes the proxy’s general strategy for code externalization. Then, a detailed descrip-

tion of the inline style sheet externalization is given in Section 5.2.2.2 and the inline script externalization is

explained in Section 5.2.2.3. Section 5.3.2 explains, how the externalized code is embedded and triggered

in locked mode.

5.2.2.1. Strategy

Code externalization is achieved with an injected script. This script will be referred to as externalize.js.

Similar to policy.js (cf. Section 5.2.1.3), the script is injected into all resources with a “text/html” or “appli-

cation/xhtml+xml” MIME-type, regardless of character set. In learning mode, it will gather all inline code

from a document. The code will be hashed using the SHA256 algorithm and compared to a list of hashes

of already externalized code. As it is sent to a sink of the web interface afterwards, this avoids transferring

already externalized code again.

Type Description

css Inline CSS code

css-attr Inline style attributes

js Inline JavaScript code

js-event Inline event handler

js-link Inline JavaScript link

Table 5.7.: Externalized code types

Inline code patterns differ from each other. More

importantly, the security requirements differ, too.

An inline event handler, for example, must be dis-

tinguishable from an inline style attribute in the

database. Since both are completely different lan-

guages, they have to be embedded differently into the

document in locked mode. Furthermore, while an at-

tacker may inject the same CSS code a second time

into the document, this might not always be safe for

scripts. An attacker might be able to place elements with event handlers in such a way that they change the

behavior of the site to his advantage. For this reason, a type is attached to every externalized code snippet.

All types are described in Table 5.7.

While the proxy is capable of rewriting most inline code, there are cases which cannot be automatically

rewritten. These shortcomings are often revealed by dynamic behavior on client- and server-side which

obscures the intent of the web application to the proxy. Inline code can be hard to rewrite when server-

side logic dynamically injects data into the code. An example of this would be a user name which gets

directly written into a script. Each user would obtain a different inline script, making an externalization

impossible. Furthermore, most strategies of rewriting dynamic code could introduce huge security problems:

One strategy could be to detect similarities between scripts and execute inline code which differs only in safe

locations. CSP 1.1 nonces could be used to allow the inline code. However, detecting these safe locations

can only be done if the proxy fully understands the intent and consequences of all differences. This clearly

is not a simple task and out of scope for autoCSP.

5.2.2.2. Inline Style Sheet Externalization

Two variants of style sheets are incompatible with a strict CSP, the first one being a style element. Style

attributes are the second anti pattern. Both types of inline CSS are explained in Section 3.4.

5.2 Learning Mode 36

Element name Type Action

* css-attr If existent, get style attribute

STYLE css Get content

Table 5.8.: Nodes visited by policy.js for style sheet externalization

As the injected script traverses the DOM, it executes the actions shown in Table 5.8. Every node is

checked for having a style attribute. When a style attribute is detected, it will be hashed and compared

to a list of already externalized code. If a match occurs, the style attribute was already externalized or is

identical to another style attribute in the document. As explained in Section 5.3.2.1, identical style attributes

are always mapped to the same class, which is why they do not need to be externalized twice. Any style

node the script encounters, will be externalized just as style attributes.

5.2.2.3. Inline Script Externalization

There are three variants of inline script which have to be externalized by the proxy to retain the functionality

of the protected web application. Section 3.5 explains inline script elements, inline event handlers and

the JavaScript pseudo protocol.

Element name Type Action

* js-event If existent, return event handlers one by one

A js-link If starting with “javascript:”, return href attribute

SCRIPT js If src attribute not set, get content

Table 5.9.: Nodes visited by policy.js for script externalization

Table 5.9 summarizes the actions externalize.js takes to obtain all three types of inline script. Every node

is checked for inline event handlers. In contrast to inline style sheets, the hash does not only contain the

event handler code. Instead, the event name and the node position are prepended to the source code before

hashing. Node positions are the chain of nodes which are traversed, when moving from the node with

the event handler up to the root of the DOM tree. The node position of the span element in Listing 5.3,

for example, would be span/div/body/html/#document. If this node would be externalized, the

complete hashed string would therefore be click,span/div/body/html/#document,code().

<html>

<body>

<div>

Example

</div>

</body>

</html>

Listing 5.3: HTML document presenting an onclick handler

5.3 Locked Mode 37

Anchor elements are scanned for URIs, starting with the string “javascript:”. This string indicates a

JavaScript pseudo protocol URI. Before externalizing script elements, they will be checked for a src

attribute as it indicates an external script. If no such attribute is found, the content of the script element

will be externalized.

5.2.3. Web Interface

In learning mode, the proxy exposes a web interface. It features a general overview of observed document

URIs with subpages which show more details for an URI. Furthermore, an export function is available to

retrieve all generated policies from the proxy’s database. This aids developers, only using the proxy for its

policy generation capabilities, in using the information for the framework or language of their choice. A

red color scheme is used in the header of the web interface to indicate that learning mode is not safe for

unauthorized access.

Static files, templates and so-called “View” functions are the main components of the web interface.

“View” functions control the logic of the interface and use templates to display information about the policy

generation process to the user. All pages of the web interface are protected by restrictive CSPs, so that they

are not the weak point in the web application’s protection. In contrast to interceptors, “View” functions are

only accessible in learning mode. Locked mode access has to be enabled separately (cf. Section 5.3.3).

Policy rules can be updated and disabled in the web interface. This enables users to manually refine

policies. If the proxy detects potential security problems (cf. Section 5.2.1.2), it stores a warning in the

database. These warnings are shown in the web interface, too.

5.3. Locked Mode

In locked mode, the proxy tries to enforce strict CSPs for all served resources. Section 5.3.1 describes the

policy enforcement algorithm. Since strict CSPs block inline code, the proxy externalizes such code in

learning mode (cf. Section 5.2.2). This code is embedded into the respective documents and triggered by

an algorithm explained in Section 5.3.2. A web interface can be used to monitor the effects of all enforced

CSPs. An description of it is given in Section 5.3.3.

5.3.1. Policy Enforcement

Satisfying the main design goal of the proxy, strict CSPs are enforced on every served resource in locked

mode. Each visited document has a unique document URI, which is used to obtain the correct policy rules

from the database (cf. Section 5.1.2). As these rules already have a CSP directive assigned to them, the

proxy only has to group resource URIs together. Due to the fact that the trusted clients are not required

to browse the complete web application in learning mode, there might be documents which are not yet

known to the proxy. This also applies to documents, which were created during locked mode. Since the

proxy never generated a policy for these resources, it cannot use a correct CSP. Instead, unknown document

URIs will be protected with the strongest possible policy, shown in Listing 5.4. While this violates another

5.3 Locked Mode 38

design goal, stating that the proxy must ensure to not break websites, it is the only secure option. If not all

resources of a web application are protected by a strict CSP, the adversary might succeed in attacking one

of the unprotected resources. Then, client-side code execution in the context of the web application could

be obtained. No security boundaries could prevent information extraction in that case anymore. This would

lead to a total bypass of the proxy’s protection.

However, there is a special case. If the unknown document URI contains a query string (denoted by a

question mark), another database lookup is attempted. For this lookup, the query string is ignored. For in-

stance, the URL http://url/?param=val will be reduced to http://url/. This heuristic assumes

that the query string indicates a subpage. Thus, the base page policy could retain the functionality of the

document.

Content-Security-Policy: default-src: ’none’; base-uri: ’none’,

form-action: ’none’;

Listing 5.4: CSP for unknown document URIs

If the web interface is enabled, it is able to monitor CSP violation reports. To enable monitoring, the

enforced CSP is complemented by a report-uri directive. All reports are processed by a data sink of

the web interface. Malformed reports will be discarded, others are directly stored in the database.

5.3.2. Triggering Externalized Code

In learning mode, inline code is stored in a database. This code must be embedded and triggered in locked

mode. Section 5.3.2.1 describes the way inline style sheets are embedded. Triggering externalized scripts

is covered by Section 5.3.2.2. Calls to eval-like constructs have to be intercepted in this mode, which is

explained in Section 5.3.2.3.

Similar to learning mode, the proxy injects a script in locked mode, triggering the externalized code. These

scripts are served by the proxy and contain the externalized code. Furthermore, their URI contains the full

path to the protected document. For instance, a script, injected into a document with the URI “/p/f.html”,

is served at “/autoCSP/_/inline/p/f.html.js”. As CSP 1.1 allows file-path URIs, the proxy makes use of that

with this approach. In consequence, an attacker is not able take advantage of a different document’s inline

script.

5.3.2.1. Externalized Style Sheets

When visiting a document in locked mode, the database will be checked for externalized CSS code. If

such code is found, a style sheet is injected into the document. Externalized style elements are output

without change into this style sheet. Unlike style attributes, the code of style elements is proper CSS.

Style attribute code, however, is lacking a selector. This means that the proxy must find a way to assign the

CSS code to the correct nodes. In order to achieve this, a script is injected into the document, too. While

traversing the DOM, it scans all nodes for style attributes. If such an attribute was found, the content is

hashed with SHA256. This hash is prefixed with the string “autoCSP” and added to the classes of the node.

5.3 Locked Mode 39

Cryptographic hash functions always yield the same result on the same input. Using this property, the proxy

is able to add selectors to externalized style attribute code. Since the hash is stored in the database, alongside

with the code, the proxy only has to concatenate the strings in the correct order. A beneficial property of this

technique is that two completely identical style attributes will always result in the same class, reducing the

overall count of additional classes.

As explained in Section 3.4, CSS declarations have a precedence. Style attributes have the highest prece-

dence, only surpassed by declarations marked with the !important keyword. This behavior must be

closely copied by the proxy to keep the layout and look of the web application intact. Hence, all semicolons

are replaced by “ !important;”. This marks all declarations of every externalized style attribute as impor-

tant, giving them a high precedence. Since the injected CSS is the first style sheet in the document, the

declarations can still be overwritten by other declarations marked as important. Tests with Firefox 25 and

Chrome 30 showed that this closely resembles the original behavior of style attributes. Listing 5.5 shows an

exemplary behavior test. It is possible to omit the last semicolon of a style attribute. A regular expression is

used to add this semicolon in this case.

<style>

div {

color: red !important;

background: red !important;

}

</style>

<style>

div {

color: blue; /* is ignored */

background: blue !important; /* overwrites the red color */

}

</style>

<div>test</div>

Listing 5.5: Test of the cascading behavior of CSS with the !important keyword

The injected style sheet has to deal with relative URIs, too. This is a problem when it is deployed from

the web interface because browsers will resolve relative URIs using the style sheet’s location as the base

URI. Therefore, the proxy intercepts all requests to resources ending with “autoCSPinline.css”, cutting

the suffix and using the prepending string for the database lookup. For example, the style sheet injected

into the document at the URI “/path/file.html” would point to “/path/file.htmlautoCSPinline.css” with the

document URI “/path/file.html”. This might hinder the web application from serving a resource with the

name “autoCSPinline.css”. To prevent this, the proxy does not intercept these requests when no inline CSS

is found in the database for the document URI.

5.3 Locked Mode 40

5.3.2.2. Externalized Scripts

In contrast to style sheets, externalizing scripts is not straightforward. Code in script elements can be

highly position dependent and rely on DOM nodes to be available at execution time. Furthermore, the order

of executed scripts matters, as one script might rely on changes done by another. In general, there are

three types of externalized code, which have to be triggered in locked mode. A script is injected into every

resource, for whose document URI externalized code can be found. Similar to style sheet externalization,

the DOM will be traversed to set up the code and trigger it. Furthermore, the proxy will wait until the

“DOMContentLoaded” event, before traversing the DOM and triggering any code. This event occurs, when

the browser finished parsing the markup and the DOM tree is complete. All DOM nodes should be available

to the externalized scripts after this event.

var inlineScripts = {

’6e11c72f7cf6bc383152dd16ddd5903aba6bb1c99d6b6639a4bb0b838185fa92’:

138,

// ...

}

Listing 5.6: Object storing externalized script IDs

Externalized scripts are not injected directly into the protected document. Instead, a SHA256 hash of the

source and its database ID is stored in a JavaScript object, shown in Listing 5.6. When the DOM-traversing

script encounters a script node in the DOM, it will check for inline code (cf. Section 5.2.2.3). If this is

the case, the content of the script node will be hashed and compared to the aforementioned JavaScript

object. Since a match means that the inline script was externalized in learning mode, a script node is then

added to the DOM. The script points to a URI of the proxy, serving the correct script (which is identified by

its ID).

var eventHandlers = {

’522c8a4aa5a415d1050a23470fd41f4587cec2bc45655b9c4ffe90890ea42e64’:

function() { with(this) { alert(1) } },

// ...

}

Listing 5.7: Object storing externalized event handler code

Inline event handlers are encapsulated in functions, as shown in Listing 5.7. These functions are stored in

a JavaScript object with the key being the SHA256 hash of the externalized code. A with statement enables

access to the properties of an object without having to expressively write it. As inline event handlers can

access the properties of the node they were defined on in the same way, this only copies the original behavior

of the externalized code. A regular expression is used to identify event handlers while traversing the DOM

(/^on([a-z]+$)/i). If a matching attribute could be found, it will be hashed in the same way it was

hashed in the learning mode (cf. Section 5.2.2.3). Event name, node path and source code are concatenated

and hashed. If a match can be found in the object holding the externalized event handlers, the corresponding

5.3 Locked Mode 41

function will be bound to the correct node. This sets the this variable to the node, the event handler is be

added to in the next step. Naturally, the injected script sets the event handler in a CSP-compliant way.

Two event handlers have to be treated in a special way. “onload” and “onerror” events are triggered, when

a resource completed loading. Due to caching, the resource might have loaded before the traversing script

adds the event handler to the respective node. Therefore, the src attribute is reset, prompting another load

of the same resource. In the worst case, this triggers another request to the server.

JavaScript pseudo protocol links are stored like externalized inline event handlers, but without the with

statement. Externalizing the links in a CSP-compatible way is possible with an event handler reacting

to clicks. Therefore, the injected script traverses the DOM and checks every anchor for containing the

JavaScript pseudo protocol. If such an anchor is found, its node path and source code is hashed. This hash

is then compared to the JavaScript object storing the externalized code. A “click” event handler, containing

the externalized function, is then added the matching node.

5.3.2.3. Eval-like Constructs

A strict CSP will prevent eval-like constructs from executing. All calls to these functions are intercepted

by an injected script in locked mode. Then, heuristics are employed to detect JSON input. If JSON could

successfully be detected, the proxy will replace the original function call with JSON.parse. This may retain

the functionality of the original code. However, all eval-like constructs used for different use cases than

JSON parsing cannot be rewritten by the proxy. The proxy would have to understand the intent of the code

to suggest replacements, which is out of scope for this thesis. Especially dynamic code building is affected

by this shortcoming of the proxy. If the web interface is enabled in locked mode, a violation report will be

emitted by the injected script. This allows developers to manually fix the problem.

[,,,1,,2,,,"value"]

Listing 5.8: Non-standard JSON breaking JSON.parse

Although most JSON can be detected and parsed, the JSON.parse API is much stricter than eval-like

constructs. Non-standard JSON, as shown in Listing 5.8, leads to exceptions, breaking code which would

run correctly using eval. Another heuristic tries to detect such cases and adds null keywords in between

the commas, where needed.

5.3.3. Web Interface

The web interface will provide information about policy violations in locked mode. These monitoring capa-

bilities can be used to find documents with incorrect CSPs. Despite the efforts of the proxy to retain the web

applications functionality, strict CSPs may still break it in certain circumstances (cf. Section 5.3.1). Show-

ing violation reports allows developers to manually fix problems. All reports are ordered by the document

URI they were collected from. Duplicate entries are prevented on a database level. A green color scheme

is used in the header of the web interface, indicating that the web application is currently protected by the

proxy.

5.3 Locked Mode 42

In this mode, protecting the web interface with HTTP basic access authentication is mandatory. Addi-

tionally, access to the web interface has to be verbosely activated in the proxy’s settings file. All these

requirements are meant to prevent leaving access open to attackers. While the web interface is limited to

monitoring in locked mode, an adversary might still obtain information from the displayed violation reports.

Critical information might be a document URI pointing to a secret resource or similar. “View” functions are

not enabled by default in locked mode. They have to be activated separately, again forcing a intentional de-

cision. Generally, no changes to the database are allowed in this mode, apart from storing violation reports.

This makes it substantially harder (or even impossible) for adversaries to inject malicious policy rules and

subvert the proxy’s protection.

6. Evaluation

An evaluation of the proxy under two aspects is given in the following sections. First, the proxy’s ability to

mitigate content injection attacks was tested. Secondly, the impact of the protection on the web application’s

functionality was observed. Section 6.1 outlines two test suites, both focusing on exactly one aspect of

the evaluation. A combination of both aspects is tested in Sections 6.2 and 6.3, where two prototypical

vulnerable web applications are deployed behind the proxy. In order to find out the proxy’s applicability to

real world web applications, a web mailer is tested in Section 6.4.

6.1. Test Suites

Two very different test suites are described in this Section. Section 6.1.1 describes a test suite, which was

built in the course of writing the proxy. Section 6.1.2, on the other hand, outlines an evaluation of the proxy’s

protection using a DOM-based XSS test suite by M. Heiderich.

6.1.1. Test Suite of the Proxy

In the course of implementing the proxy, various edge cases and problems surfaced. Every time such a

problem was fixed or the proxy learned a new CSP directive, test cases were added to its suite. All test cases

were categorized by the CSP directives they belong to and were given descriptive names. The test suite

features 44 samples, associated to 9 CSP directives, and a total of 59 files.

<!DOCTYPE html>

<title>inline script adds inline event handlers</title>

<script>

// possibility #1

document.write(’’)

window.addEventListener(’load’, function() {

// possibility #2

document.body.innerHTML = ’’;

});

</script>

Listing 6.1: Exemplary test case presenting two ways of adding inline event handlers

6.1 Test Suites 44

Listing 6.1 shows one of the test cases. It is called “inline script adds inline event handlers” and demon-

strates two ways of adding inline event handlers from inline JavaScript code. The proxy should externalize

the inline JavaScript block correctly and detect all changes to the DOM. Then, all event handlers should be

replaced by their externalized counterparts. Naturally, the proxy passes all test cases in the suite.

6.1.2. DOM-based XSS Test Suite

A test suite by M. Heiderich was used to evaluate the proxy’s protection regarding DOM-based XSS. Three

vulnerabilities were exploited in locked mode to observe the mitigation effect. They are enumerated in

Listing 6.2. Many of these vulnerable code snippets use the JQuery1 library. A knowledge of this library is

not needed to understand the attack vectors and the results. This evaluation focuses on the protection aspect

only, as no notable functionality is exhibited by the test suite.

// vulnerability #1

$(location.hash)

// vulnerability #2

$(’#search’).html(’You searched for: ’+

$(’#search-text’).attr(’value’));

// vulnerability #3

dispMonth = eval (document.cookie.substring(countbegin,countend));

Listing 6.2: Vulnerabilities of the DOM-based XSS test suite relevant for the evaluation

• The first vulnerability can be exploited by a simple content injection in the URL hash. Due to the

enforcement of a strict CSP in locked mode, inline JavaScript and CSS is useless for an attacker. Other

means of obtaining data leakage, like dangling markup injection attacks, are not effective because of

the strict limitations to the document’s capabilities. It is not able to send data using forms or similar.

A static content injection is still possible, but unlikely to result in a data leakage.

• Vulnerability number two is exploitable by filling the input element, identified by the ID “search”,

with a XSS vector. In essence, the mitigation is identical to the one of the first flaw. Both code snippets

output attacker-controlled values directly to the DOM of a document. As a matter of course, the proxy

manages to prevent a meaningful attack.

• In the third test case, an eval statement is used to parse a cookie value. An attacker might be able

to inject cookies into the web application to exploit this. For testing purposes, this is not important.

Regardless of the attack scenario, the proxy must be able to mitigate this weakness in order to offer

a complete protection. In locked mode, eval-like constructs are disabled and only rewritten, if they

receive JSON. Thus, any possible attack is mitigated, but the functionality of the code snippet cannot

be preserved.

1jQuery, http://jquery.com/, Oct. 2013

http://jquery.com/

6.2 Google Gruyere 45

6.2. Google Gruyere

In order to evaluate the protection and usefulness of the proxy, Google Gruyere2 was deployed. As Gruyere

is deliberately vulnerable, the proxy had to prove that it is capable of defending flawed web applications.

Furthermore, the ability to retain the functionality and look of a website was tested. Six XSS vulnerabilities

of Gruyere were used for the evaluation. First, the vulnerable documents were visited in learning mode (if

possible). Then, locked mode was activated and the vulnerabilities were exploited. All used XSS vectors

utilized the alert function of JavaScript to give a clear indication of whether the attack was successful or

not. Finally, the functioning and look of the web application was checked for flaws, which could have been

introduced by the proxy.

A detailed description of the testing process is given in Section 6.2.1. Section 6.2.2 summarizes the

findings.

6.2.1. Testing Process

The first XSS vulnerability can be found in Gruyere’s upload function. An attacker is able to upload ar-

bitrary files, and hence HTML documents with malicious payload. As the URI of the uploaded document

changes according to the file name, the proxy is not able to generate a policy for all future uploaded files

in learning mode. However, since a strict policy is used for unknown document URIs in locked mode, the

proxy successfully mitigated the attack. Furthermore, no core functionality of the web application was lost

because uploaded files were still viewable (but without active content).

A reflective XSS flaw can be found in one of Gruyere’s error pages. Each time the error document

for missing resources is displayed (HTTP status 404), it outputs the URI. An exemplary attack appends

the malicious payload to the URI, like this: http://gruyere/<script>alert(1)</script>.

Again, the URL is not static and changes constantly, so that the proxy cannot observe a policy for all future

visits. While the attack was successfully mitigated in locked mode, the styling of the error page could not

be retained due to its changing URL. In contrast to the file upload mechanism, this actually is highlighting a

downside of the proxy.

Gruyere allows users to store snippets. Due to improper sanitization, malicious payloads can be saved,

too. One example is the payload , which was used for testing.

After all inline code was externalized and all policies were generated in learning mode, the proxy was able

to mitigate the attack. Furthermore, the functionality and style of the web site could be retained. As a result

of that users were still able to store new snippets. Only active content was blocked by the enforced CSP.

Another persistent XSS vulnerability can be found in the color value setting of the profile. It enables users

to customize the color of their nickname. However, an adversary might escape from the inline style attribute

this value gets output to and inject his malicious payload. ' onmouseover=alert(1) is an exemplary

payload achieving this. In locked mode, the enforced CSPs successfully thwarts this attack. Nickname colors

are only preserved, if they were already observed in learning mode. Colors are output into an inline style

2B. Leban, M. Bendre and P. Tabriz, Web Application Exploits and Defenses, http://google-gruyere.appspot.
com/, Oct. 2013

http://google-gruyere.appspot.com/
http://google-gruyere.appspot.com/

6.3 Damn Vulnerable Web Application 46

attribute, so that the proxy will compare them to the externalized CSS it collected. If extensive usage of

this feature is conducted in learning mode, the proxy can build a whitelist of allowed colors. Therefore, this

counts as a test case in which the functionality was fully retained.

A DOM-based XSS vulnerability can be found in Gruyere’s “Refresh” function. It retrieves JSON-

encoded data from the server and parses it with eval. An attacker can escape from the JSON data structure

with a payload like this ”-alert(1)-”. As eval-like constructs are disallowed in locked mode, the vul-

nerability could not be exploited anymore. However, since the returned JSON is enclosed by a function call,

the proxy was not able to rewrite it. Listing 6.3 shows the content of the JSON response, which is directly

fed into the eval function.

_feed((["val1","val2","val3"]))

Listing 6.3: JSON response, enclosed by a function call, which is parsed with eval in Gruyere’s “Refresh”

function

The last XSS vulnerability is reflective. It can be found in Gruyere’s JSON API, where an attacker is able

to use a query parameter for the injection ([...]?uid=<script>alert(1)</script>). Since this

document is normally loaded via the XMLHttpRequest API, the proxy does not build a policy it in learning

mode. In consequence, the attack was successfully mitigated in locked mode because a very prohibitive

policy is employed on unknown document URIs. As this is the same JSON sink as shown in Listing 6.3, the

functionality of the page is still broken due to the enclosing function call.

6.2.2. Summary

Six XSS vulnerabilities of Google Gruyere were tested under two aspects. First, the mitigation capabilities of

the proxy were checked in order to evaluate the protection of the proxy. Secondly, the protected documents

were tested for broken functionality, introduced by the proxy.

On the one hand, the proxy was able to mitigate all of the six XSS flaws. An attacker is not able to exploit

these vulnerabilities, if the locked mode is activated. On the other hand, only three of six test cases led to a

fully working web application in locked mode. One of the test cases had inline style sheets which could not

be externalized correctly, while two others used a nonstandard form of JSON in an eval statement.

6.3. Damn Vulnerable Web Application

Damn Vulnerable Web Application (DVWA) demonstrates multiple security vulnerabilities in a live envi-

ronment3. It was purposely built in a flawed way and serves educational purposes. All vulnerabilities are

available in low, medium and high security levels. Tests were conducted with version 1.0.8 of DVWA,

which features ten classes of flaws. Two of these were used for the tests because they were content injection

vulnerabilities.

Section 6.3.1 describes the testing process and Section 6.3.2 summarizes the results.

3Damn Vulnerable Web Application, http://www.dvwa.co.uk/, Oct. 2013

http://www.dvwa.co.uk/

6.3 Damn Vulnerable Web Application 47

6.3.1. Testing Process

// low reflected XSS

echo ’Hello ’ . $_GET[’name’];

// medium reflected XSS

echo ’Hello ’ . str_replace(’<script>’, ’’, $_GET[’name’]);

// high reflected XSS

echo ’Hello ’ . htmlspecialchars($_GET[’name’]);

Listing 6.4: Relevant code parts of the three reflected XSS security levels of DVWA

First, the reflected XSS flaws of DVWA were tested. Listing 6.4 shows the relevant code of the three

reflected XSS security levels in ascending order. While the low and medium flaws are vulnerable to almost

any potential XSS vector, the high security reflected XSS sample does not seem to be exploitable at all. An

attacker can, for example, inject the vector <script>alert(1)</script> into a query parameter of

the web application. In learning mode, the proxy observed four resources and externalized 19 inline event

handlers. Two of the 19 event handlers were used to display pop-ups and the remaining 17 for navigation

purposes. In locked mode, this retained the document’s original functionality almost completely, while

mitigating all attacks. Only the pop-up function, called in two of the event handlers, broke, due to the use of

an eval statement. Listing 6.5 shows the problematic code. As the proxy does not understand the intent of

the code snippet, it cannot securely rewrite the code. It should be noted, that this code can be rewritten to an

eval-free form by a human.

eval("page" + id + " = window.open(URL, ’" + id + "’, /* ... */);");

Listing 6.5: Problematic call to eval in DVWA’s pop-up function

DVWA’s stored XSS vulnerabilities use the exact same vulnerable code as presented in Listing 6.4, even

though the attack vectors are saved in a database. The flawed document contains two input fields which can

be used to add entries to a guest book. In learning mode, the proxy observed four resource URIs. Addi-

tionally, 21 inline event handlers were externalized. A total of 17 thereof are used by DVWA for navigation

purposes, while the others are utilized to open pop-ups (2) or validate the HTML form (2). Using this policy,

the proxy managed to mitigate all XSS attacks in locked mode. More interestingly, the proxy managed to

retain most of the functionality of the site. All event handlers executed correctly. Again, only the call to eval

could not be successfully rewritten.

6.3.2. Summary

Four XSS vulnerabilities of DVWA were tested in order to evaluate the mitigation capabilities of the proxy.

Additionally, the original functionality of the web application was compared to the functionality in locked

mode to detect potential problems.

Similar to the analysis of Google Gruyere (cf. Section 6.2), the proxy managed to mitigate all vulnera-

bilities. Most of the functionality of the web application could be preserved, apart from a call to eval. This,

6.4 Roundcube Mail 48

again, resembles closely the results of the Gruyere analysis.

6.4. Roundcube Mail

Roundcube4 is a web mailer – it features E-Mail client capabilities in a web application. Furthermore, it

offers a rich interface, making heavy use of JavaScript for navigation and data retrieval. Therefore, it was

chosen for yet another test of the proxy’s abilities to retain functionality.

While the complete style of the web application could be retained, a conceptual problem of the proxy

prevented JavaScript code from running. The main page of the web mailer featured a dynamically changing

script. In particular, a request token changed at every new login and was reflected into an inline script. Since

the DOM-traversing script could not recognize the changing script in locked mode, it was not replaced by

externalized code. Allowing changes to the code in locked mode (as needed if it is dynamically changing)

may give an attacker the possibility to manipulate the control flow of the web application. Obviously, this

might result in security problems. Therefore, the proxy avoids this at the cost of breaking web applications

in such cases.

4Roundcube - Free and Open Source Webmail Software, http://roundcube.net/, Oct. 2013

http://roundcube.net/

7. Conclusion

This thesis introduced a reverse HTTP proxy, capable of protecting arbitrary web applications with CSP. It

infers strict policies from the observed markup and externalizes inline code automatically. For the purpose

of making documents compliant to strict CSPs, it attempts to rewrite calls to eval-like constructs. All

capabilities were derived from a set of design goals. Additionally, a definition of a strict CSP was given,

clarifying the requirements needed to obtain a solid protection from data leakage attacks.

An evaluation of the proxy was conducted, in order to estimate its effectiveness against data leakage and

XSS payloads. Additionally, the ability to retain website functionality was tested. In summary, the chosen

policy generation strategy proved to be robust, while problems arose in the mechanisms making arbitrary

documents CSP-compliant. Particularly calls to eval-like constructs could often not be rewritten by the

proxy. This clearly indicates that these constructs are used regularly for other use cases than JSON parsing.

Future research needs to find better approaches to automatically rewrite eval-like constructs in a secure way.

Many problems of the proxy can be attributed to its conception. Due to being application agnostic and

treating the server-side implementation as a black box, it cannot securely detect similar documents or ex-

ternalize dynamically changing code. Future work may explore the possibilities offered by changing from

fully automated mechanisms to user guided algorithms. For instance, users could aid the heuristic, detecting

similar pages, by choosing base policies. These policies could be used for all URIs meeting certain criteria.

Achieving a complete coverage of the proxied web application in learning mode is a topic, not addressed

by this thesis. Again, future work might find suitable approaches for this problem. Browsers could be

controlled by the proxy and crawl the web application.

Several conclusions can be drawn in terms of CSP. It can be seen as an attempt to solve some of the

problems depicted by Reis et al. in 2007 [3]. While still relying on origins to define security boundaries,

unwanted code can be strictly limited in capabilities by a policy. This thesis intentionally used the notion

“web application”, expressing that CSP shifts the focus from traditional websites to applications in the web.

In conclusion, this thesis proves that automatic policy generation certainly is possible. Automatically

rewriting eval-like constructs, on the other hand, remains to be a hard problem. Inline code externalization,

as presented in this thesis, worked in the majority of tested cases. Only dynamically changing inline code

cannot be externalized. More specific solutions, tailored to a class of web applications, will most likely

yield even better results. Nevertheless, if the proxy’s concept is continuously extended, it has the potential

to substantially promote the use of CSP in the web.

A. Appendix

A.1. Alexa Top 1000 Analysis

Alexa’s top 1000 most popular websites1 were used for a study supporting various claims of this thesis.
This analysis primarily features the proportion of same-origin compared to cross-origin resources and the
percentage of hosts using code patterns incompatible with CSP. The study was conducted with a recursion
depth of one.

Collecting this data is a nontrivial task. Dynamic changes of the DOM have to be considered, just as
resources, which occur more than once. It may also prove to be difficult to generate a comprehensive list of
all code patterns which are able to embed a resource. There are a multitude of technologies implemented in
modern browsers with such capabilities [26, 28].

Many of these problems are countered by a dynamic analysis. Browsers already comply with a lot of
requirements needed to analyze highly dynamic websites. An instrumented web browser is able to execute
all active content, such as JavaScript. This makes it possible to observe DOM changes and calls to CSP-
incompatible functions, like eval. Detecting all embedded resources may still be a problem because of the
aforementioned reasons. Since CSP violation reports resemble the browser’s understanding of the website,
they can be used to observe all resources of a document (cf. Section 4.3). A strict policy, such as the
one presented in Section 5.2.1.2, allows for inline code detection, too. For this reason a web proxy was
implemented, using the Python libmproxy library2. It injects a strict CSP Report-Only header into every
served resource and stores the resulting violation reports for later analysis. Duplicates are prevented on a
database level. A proxy can be deployed centrally, but serve many clients. Hence, multiple user agents were
instrumented using Selenium WebDriver3 to browse the websites.

Although many precautions were taken to ensure the correctness of the results, there are limitations.
Dynamic analyses are not exhaustive. Instead, they can only observe one execution path of active content
at a time, potentially missing others. Moreover, no user input was simulated. Thus no event handler could
be triggered, which could have changed the DOM or executed CSP-incompatible functions. However, these
concerns should not affect the conclusions drawn from the results because only tendencies are derived from
the numbers.

As shown by Table A.1, overall 1398 distinct hosts were visited in the course of the analysis. This is a
consequence of documents framing or redirecting to other hosts, which are not part of Alexa’s top 1000 list.
A total of 85163 unique reports could be gathered, which are comprised of 76821 external resources, 1119
connection attempts, 893 eval-like constructs and 4330 inline code blocks. All connection attempts were
conducted using APIs like XMLHttpRequest or similar.

Of all observed hosts, about 96 percent used at least one CSP-incompatible code pattern. On average,
3.74 of such patterns exist per site. This result clearly shows that inline code and eval-like constructs are
prevalent on today’s websites.

Figure A.1 indicates a tendency towards cross-origin resources. Many websites use Content Delivery

1http://www.alexa.com/topsites, Oct. 2013
2A. Cortesi, libmproxy: mitmproxy as a library, http://mitmproxy.org/doc/library.html, Oct. 2013
3Selenium WebDriver, http://www.seleniumhq.org/projects/webdriver/, Oct. 2013

http://www.alexa.com/topsites
http://mitmproxy.org/doc/library.html
http://www.seleniumhq.org/projects/webdriver/

A.1 Alexa Top 1000 Analysis 51

same-origin

18%

cross-origin

82%

Figure A.1.: Proportions of resource origins

Name Count
Overall distinct hosts 1398
Overall gathered reports 85163
External resources 78821
Inline scripts 2313
Inline styles 2017
Executed eval-like constructs 893
Connections 1119
Hosts incompatible with CSP 1351
Same-origin resources 13932
Cross-origin resources 64889

Table A.1.: Results of the Alexa analysis

Networks (CDNs) and separate domains to serve static resources of the web application4. Hence, many
style sheets, scripts, images and other resources are served by cross-origin domains.

4BuiltWith, Content Delivery Network Usage Statistics, http://trends.builtwith.com/CDN/
Content-Delivery-Network, Oct. 2013

http://trends.builtwith.com/CDN/Content-Delivery-Network
http://trends.builtwith.com/CDN/Content-Delivery-Network

Bibliography

[1] T. Berners-Lee and M. Fischetti, Weaving the Web: The Original Design and Ultimate Destiny of the
World Wide Web by Its Inventor. HarperInformation, 2000.

[2] C. Marrin, “WebGL Specification - Version 1.0.2,” 2013, https://www.khronos.org/registry/webgl/
specs/1.0/.

[3] C. Reis, S. D. Gribble, and H. M. Levy, “Architectural Principles for Safe Web Programs,” in Sixth
Workshop on Hot Topics in Networks (HotNets), vol. 2007, 2007.

[4] OWASP, “OWASP Top 10 - The Ten Most Critical Web Application Security Risks,” 2013, http://
owasptop10.googlecode.com/files/OWASP%20Top%2010%20-%202013.pdf.

[5] M. R. Stytz, “Considering Defense in Depth for Software Applications,” Security & Privacy, IEEE,
vol. 2, no. 1, pp. 72–75, 2004.

[6] S. Stamm, B. Sterne, and G. Markham, “Reining in the Web with Content Security Policy,” in Pro-
ceedings of the 19th international conference on World wide web, ser. WWW ’10. New York, NY,
USA: ACM, 2010, pp. 921–930.

[7] M. Johns, B. Engelmann, and J. Posegga, “XSSDS: Server-Side Detection of Cross-Site Scripting
Attacks,” in Computer Security Applications Conference, 2008. ACSAC 2008. Annual, 2008, pp. 335–
344.

[8] E. Kirda, C. Kruegel, G. Vigna, and N. Jovanovic, “Noxes: A Client-Side Solution for Mitigating
Cross-Site Scripting Attacks,” in Proceedings of the 2006 ACM symposium on Applied computing.
ACM, 2006, pp. 330–337.

[9] W. K. Robertson and G. Vigna, “Static Enforcement of Web Application Integrity Through Strong
Typing,” in USENIX Security Symposium, 2009, pp. 283–298.

[10] M. Ter Louw, P. Bisht, and V. Venkatakrishnan, “Analysis of Hypertext Isolation Techniques for XSS
Prevention,” Web 2.0 Security and Privacy 2008, 2008.

[11] Y. Nadji, P. Saxena, and D. Song, “Document Structure Integrity: A Robust Basis for Cross-site Script-
ing Defense,” in NDSS, 2009.

[12] M. S. Miller, M. Samuel, B. Laurie, I. Awad, and M. Stay, “Safe active content in sanitized JavaScript,”
Technical report, Tech. Rep., Google, Inc, Tech. Rep., 2008.

[13] M. Ter Louw and V. Venkatakrishnan, “Blueprint: Robust Prevention of Cross-site Scripting Attacks
for Existing Browsers,” in Security and Privacy, 2009 30th IEEE Symposium on. IEEE, 2009, pp.
331–346.

[14] T. Jim, N. Swamy, and M. Hicks, “Defeating Script Injection Attacks with Browser-Enforced Embed-
ded Policies,” in Proceedings of the 16th international conference on World Wide Web. ACM, 2007,
pp. 601–610.

https://www.khronos.org/registry/webgl/specs/1.0/
https://www.khronos.org/registry/webgl/specs/1.0/
http://owasptop10.googlecode.com/files/OWASP%20Top%2010%20-%202013.pdf
http://owasptop10.googlecode.com/files/OWASP%20Top%2010%20-%202013.pdf

Bibliography 53

[15] M. Heiderich, “Towards Elimination of XSS Attacks with a Trusted and Capability Controlled DOM,”
Ph.D. dissertation, Ruhr-University Bochum, 2012.

[16] J. Weinberger, A. Barth, and D. Song, “Towards Client-side HTML Security Policies,” in Workshop on
Hot Topics on Security (HotSec), 2011.

[17] K. Patil, T. Vyas, F. Braun, M. Goodwin, and Z. Liang, “Poster: UserCSP-User Specified Content
Security Policies,” 2013.

[18] A. Javed, “CSP AiDer: An Automated Recommendation of Content Security Policy for Web Applica-
tions,” 2011.

[19] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee, “RFC 2616:
Hypertext Transfer Protocol – HTTP/1.1,” RFC, 1999, http://tools.ietf.org/html/rfc2616.

[20] T. Berners-Lee, R. Fielding, and H. Frystyk, “RFC 1945: Hypertext Transfer Protocol – HTTP/1.0,”
RFC, 1996, http://tools.ietf.org/html/rfc1945.

[21] M. Shapiro, “Structure and Encapsulation in Distributed Systems: the Proxy Principle,” in icdcs. Cam-
bridge, MA, USA, États-Unis: IEEE, 1986, pp. 198–204.

[22] A. Luotonen and K. Altis, “World-Wide Web proxies,” Computer Networks and ISDN Systems , vol. 27,
no. 2, pp. 147 – 154, 1994, selected Papers of the First World-Wide Web Conference.

[23] M. Abrams, C. R. Standridge, G. Abdulla, S. Williams, and E. A. Fox, “Caching proxies: Limitations
and potentials,” 1995.

[24] D. Koblas and M. R. Koblas, “Socks,” in UNIX Security III Symposium (1992 USENIX Security Sym-
posium), 1992, pp. 77–83.

[25] T. Berners-Lee, “HTML,” 1992, http://www.w3.org/History/19921103-hypertext/hypertext/WWW/
MarkUp/MarkUp.html.

[26] R. Berjon, S. Faulkner, T. Leithead, E. D. Navara, E. O’Connor, S. Pfeiffer, and I. Hickson, “HTML5,”
W3C Candidate Recommendation, 2013, http://www.w3.org/TR/html5/.

[27] I. Hickson, “HTML,” Living Standard, http://www.whatwg.org/specs/web-apps/current-work/
multipage/.

[28] B. Bos, T. Çelik, I. Hickson, and H. W. Lie, “Cascading Style Sheets Level 2 Revision 1 (CSS 2.1)
Specification,” W3C Recommendation, 2011, http://www.w3.org/TR/2011/REC-CSS2-20110607/.

[29] T. Çelik, E. J. Etemad, D. Glazman, I. Hickson, P. Linss, and J. Williams, “Selectors Level 3,” W3C
Recommendation, 2011, http://www.w3.org/TR/css3-selectors/.

[30] A. van Kesteren, T. Çelik, D. Glazman, and H. W. Lie, “Media Queries,” W3C Recommendation,
2012, http://www.w3.org/TR/css3-mediaqueries/.

[31] P. Linss and C. Lilley, “CSS Namespaces Module,” W3C Recommendation, 2011, http://www.w3.org/
TR/css3-namespace/.

[32] T. Çelik, C. Lilley, L. D. Baron, S. Pemberton, and B. Pettit, “CSS Color Module Level 3,” W3C
Recommendation, 2011, http://www.w3.org/TR/css3-color/.

http://tools.ietf.org/html/rfc2616
http://tools.ietf.org/html/rfc1945
http://www.w3.org/History/19921103-hypertext/hypertext/WWW/MarkUp/MarkUp.html
http://www.w3.org/History/19921103-hypertext/hypertext/WWW/MarkUp/MarkUp.html
http://www.w3.org/TR/html5/
http://www.whatwg.org/specs/web-apps/current-work/multipage/
http://www.whatwg.org/specs/web-apps/current-work/multipage/
http://www.w3.org/TR/2011/REC-CSS2-20110607/
http://www.w3.org/TR/css3-selectors/
http://www.w3.org/TR/css3-mediaqueries/
http://www.w3.org/TR/css3-namespace/
http://www.w3.org/TR/css3-namespace/
http://www.w3.org/TR/css3-color/

Bibliography 54

[33] “ECMAScript Language Specification - 5.1 Edition,” ECMA Standard, 2011, http://www.
ecma-international.org/ecma-262/5.1/.

[34] S. Tilkov and S. Vinoski, “Node. js: Using JavaScript to Build High-Performance Network Programs,”
Internet Computing, IEEE, vol. 14, no. 6, pp. 80–83, 2010.

[35] J. Aubourg, J. Song, H. R. M. Steen, and A. van Kesteren, “XMLHttpRequest,” W3C Working Draft,
2012, http://www.w3.org/TR/XMLHttpRequest/.

[36] I. Hickson, “The WebSocket API,” W3C Candidate Recommendation, 2012, http://www.w3.org/TR/
websockets/.

[37] D. Crockford, “RFC 4627: The application/json Media Type for JavaScript Object Notation (JSON),”
RFC, 2006, http://tools.ietf.org/html/rfc4627.

[38] A. L. Hors, P. L. Hégaret, L. Wood, G. Nicol, J. Robie, M. Champion, and S. Byrne, “Document
Object Model (DOM) Level 3 Core Specification,” W3C Recommendation, 2004, http://www.w3.org/
TR/DOM-Level-3-Core/.

[39] A. van Kesteren, A. Gregor, L. Hunt, and Ms2ger, “DOM4,” W3C Working Draft, 2012, http://www.
w3.org/TR/domcore/.

[40] A. Barth, “RFC 6454: The Web Origin Concept,” RFC, 2011, http://tools.ietf.org/html/rfc6454.

[41] F. Braun, “Origin Policy Enforcement in Modern Browsers,” Diploma Thesis, 2012.

[42] P. Gordon, “Data Leakage - Threats and Mitigation,” 2007.

[43] N. Barrett, “Penetration Testing and Social Engineering: Hacking the Weakest Link,” Information
Security Technical Report, vol. 8, no. 4, pp. 56–64, 2003.

[44] A. Klein, “DOM Based Cross Site Scripting or XSS of the Third Kind,” 2005, http://www.webappsec.
org/projects/articles/071105.html.

[45] M. Heiderich, J. Schwenk, T. Frosch, J. Magazinius, and E. Z. Yang, “mXSS Attacks: Attacking
well-secured Web-Applications by using innerHTML Mutations,” 2013.

[46] A. Barth and B. Sterne, “Content Security Policy 1.0,” W3C Candidate Recommendation, 2012, http:
//www.w3.org/TR/CSP/.

[47] M. Heiderich, M. Niemietz, F. Schuster, T. Holz, and J. Schwenk, “Scriptless Attacks: Stealing the Pie
Without Touching the Sill,” in Proceedings of the 2012 ACM conference on Computer and communi-
cations security. ACM, 2012, pp. 760–771.

[48] J. Daggett, “CSS Fonts Module Level 3,” W3C Candidate Recommendation, 2013, http://www.w3.
org/TR/2013/CR-css-fonts-3-20131003/.

[49] J. Kew, T. Leming, and E. van Blokland, “WOFF File Format 1.0,” W3C Recommendation, 2012,
http://www.w3.org/TR/2012/REC-WOFF-20121213/.

[50] M. Zalewski, “Postcards from the post-xss world,” http://lcamtuf.coredump.cx/postxss/.

http://www.ecma-international.org/ecma-262/5.1/
http://www.ecma-international.org/ecma-262/5.1/
http://www.w3.org/TR/XMLHttpRequest/
http://www.w3.org/TR/websockets/
http://www.w3.org/TR/websockets/
http://tools.ietf.org/html/rfc4627
http://www.w3.org/TR/DOM-Level-3-Core/
http://www.w3.org/TR/DOM-Level-3-Core/
http://www.w3.org/TR/domcore/
http://www.w3.org/TR/domcore/
http://tools.ietf.org/html/rfc6454
http://www.webappsec.org/projects/articles/071105.html
http://www.webappsec.org/projects/articles/071105.html
http://www.w3.org/TR/CSP/
http://www.w3.org/TR/CSP/
http://www.w3.org/TR/2013/CR-css-fonts-3-20131003/
http://www.w3.org/TR/2013/CR-css-fonts-3-20131003/
http://www.w3.org/TR/2012/REC-WOFF-20121213/
http://lcamtuf.coredump.cx/postxss/

Bibliography 55

[51] D. Bates, A. Barth, and C. Jackson, “Regular expressions considered harmful in client-side XSS fil-
ters,” in Proceedings of the 19th international conference on World wide web, ser. WWW ’10. New
York, NY, USA: ACM, 2010, pp. 91–100.

[52] C. Karlof, U. Shankar, J. D. Tygar, and D. Wagner, “Dynamic pharming attacks and locked same-origin
policies for web browsers,” in Proceedings of the 14th ACM conference on Computer and communica-
tions security, ser. CCS ’07. New York, NY, USA: ACM, 2007, pp. 58–71.

[53] D. Atkins and R. Austein, “RFC 3833: Threat Analysis of the Domain Name System (DNS),” RFC,
2004, http://tools.ietf.org/html/rfc3833.

[54] S. Kleiman, D. Shah, and B. Smaalders, Programming with threads. Sun Soft Press, 1996.

http://tools.ietf.org/html/rfc3833

	List of Figures
	List of Tables
	Introduction
	Related Work
	Fundamentals
	HTTP
	Proxy Servers
	HTML
	CSS
	JavaScript
	JSON
	DOM
	Same-Origin-Policy
	Attacks

	Content Security Policy
	Concept
	Directives
	Report-Only
	CSP 1.1
	Limitations

	Reverse HTTP Proxy
	Design
	Learning Mode
	Locked Mode

	Evaluation
	Test Suites
	Google Gruyere
	Damn Vulnerable Web Application
	Roundcube Mail

	Conclusion
	Appendix
	Alexa Top 1000 Analysis

	Bibliography

